- -

On-Surface Cucurbit[n]uril Supramolecular Recognition for an Optical Sensor Design

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On-Surface Cucurbit[n]uril Supramolecular Recognition for an Optical Sensor Design

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jiménez, Javier es_ES
dc.contributor.author Blasco, Sonia es_ES
dc.contributor.author Blanco, Elias es_ES
dc.contributor.author Atienzar Corvillo, Pedro Enrique es_ES
dc.contributor.author del Pozo, María es_ES
dc.contributor.author Quintana, Carmen es_ES
dc.date.accessioned 2020-11-19T04:31:55Z
dc.date.available 2020-11-19T04:31:55Z
dc.date.issued 2019-06-28 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155301
dc.description This is the peer reviewed version of the following article: ChemistrySelect 2019, 4, 7036 7041, which has been published in final form at https://doi.org/10.1002/slct.201901127. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] A novel optical sensor, based on the use of the macrocyclic receptor cucurbit[7]uril as molecular selector taking part of a sensing poly(vinyl chloride)-based membrane immobilized onto a quartz slide surface, has been developed and tested to thiabendazole analysis. The method is built upon the increase of the thiabendazole fluorescence as a result of the supramolecular recognition event. Variables involved in the membrane construction and fluorescence measurements have been evaluated and optimized. The sensing membrane is prepared by a spin-coating procedure (1 min at 800 r.p.m.). An increase of more than 2 fold in the fluorescence signal is observed when the supramolecular complex is immobilized into the membrane respect to that observed for the free guest. Under optimized conditions, the dispositive responds in a few seconds to thiabendazole concentrations at 10(-7) M level. In addition, the characterization of the supramolecular complex together with lifetime measurements is included. es_ES
dc.description.sponsorship The authors would like to thank the Comunidad Autonoma de Madrid (P2018/NMT-4349, TRANSNANOAVANSENS-CM) for financial support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemistrySelect es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cucurbituril es_ES
dc.subject Fungicide es_ES
dc.subject Membrane es_ES
dc.subject Sensors es_ES
dc.subject Thiabendazole es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title On-Surface Cucurbit[n]uril Supramolecular Recognition for an Optical Sensor Design es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/slct.201901127 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//P2018%2FNMT-4349/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Jiménez, J.; Blasco, S.; Blanco, E.; Atienzar Corvillo, PE.; Del Pozo, M.; Quintana, C. (2019). On-Surface Cucurbit[n]uril Supramolecular Recognition for an Optical Sensor Design. ChemistrySelect. 4(24):7036-7041. https://doi.org/10.1002/slct.201901127 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/slct.201901127 es_ES
dc.description.upvformatpinicio 7036 es_ES
dc.description.upvformatpfin 7041 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 2365-6549 es_ES
dc.relation.pasarela S\410846 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.description.references Montes-Navajas, P., Baumes, L. A., Corma, A., & Garcia, H. (2009). Dual-response colorimetric sensor array for the identification of amines in water based on supramolecular host–guest complexation. Tetrahedron Letters, 50(20), 2301-2304. doi:10.1016/j.tetlet.2009.02.189 es_ES
dc.description.references Telting-Diaz, M., & Bakker, E. (2002). Mass-Produced Ionophore-Based Fluorescent Microspheres for Trace Level Determination of Lead Ions. Analytical Chemistry, 74(20), 5251-5256. doi:10.1021/ac025596i es_ES
dc.description.references Uttam, B., Hussain, M. A., Joshi, S., & Rao, C. P. (2018). Physicochemical and Ion-Sensing Properties of Benzofurazan-Appended Calix[4]arene in Solution and on Gold Nanoparticles: Spectroscopy, Microscopy, and DFT Computations in Support of the Species of Recognition. ACS Omega, 3(12), 16989-16999. doi:10.1021/acsomega.8b02848 es_ES
dc.description.references Shamsipur, M., Sadeghi, M., Beyzavi, M. H., & Sharghi, H. (2015). Development of a novel fluorimetric bulk optode membrane based on meso-tetrakis(2-hydroxynaphthyl) porphyrin (MTHNP) for highly sensitive and selective monitoring of trace amounts of Hg2+ ions. Materials Science and Engineering: C, 48, 424-433. doi:10.1016/j.msec.2014.12.030 es_ES
dc.description.references Cano-Raya, C., Fernández-Ramos, M. D., Gómez-Sánchez, J., & Capitán-Vallvey, L. F. (2006). Irreversible optical sensor for mercury determination based on tetraarylborate decomposition. Sensors and Actuators B: Chemical, 117(1), 135-142. doi:10.1016/j.snb.2005.11.009 es_ES
dc.description.references Sahari, A., Ruckh, T. T., Hutchings, R., & Clark, H. A. (2015). Development of an Optical Nanosensor Incorporating a pH-Sensitive Quencher Dye for Potassium Imaging. Analytical Chemistry, 87(21), 10684-10687. doi:10.1021/acs.analchem.5b03080 es_ES
dc.description.references Assaf, K. I., & Nau, W. M. (2015). Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chemical Society Reviews, 44(2), 394-418. doi:10.1039/c4cs00273c es_ES
dc.description.references Ganguly, A., Ghosh, S., & Guchhait, N. (2016). Inclusion of an Anthracene-based Fluorophore within Molecular Containers: A Comparative Study of the Cucurbituril and Cyclodextrin Host Families. The Journal of Physical Chemistry B, 120(19), 4421-4430. doi:10.1021/acs.jpcb.6b04178 es_ES
dc.description.references Rankin, M. A., & Wagner, B. D. (2004). Fluorescence Enhancement of Curcumin upon Inclusion into Cucurbituril. Supramolecular Chemistry, 16(7), 513-519. doi:10.1080/10610270412331283583 es_ES
dc.description.references Geng, Q.-X., Cong, H., Tao, Z., Lindoy, L. F., & Wei, G. (2015). Cucurbit[7]uril-improved recognition by a fluorescent sensor for cadmium and zinc cations. Supramolecular Chemistry, 28(9-10), 784-791. doi:10.1080/10610278.2015.1117614 es_ES
dc.description.references Smith, L. C., Leach, D. G., Blaylock, B. E., Ali, O. A., & Urbach, A. R. (2015). Sequence-Specific, Nanomolar Peptide Binding via Cucurbit[8]uril-Induced Folding and Inclusion of Neighboring Side Chains. Journal of the American Chemical Society, 137(10), 3663-3669. doi:10.1021/jacs.5b00718 es_ES
dc.description.references Lazar, A. I., Biedermann, F., Mustafina, K. R., Assaf, K. I., Hennig, A., & Nau, W. M. (2016). Nanomolar Binding of Steroids to Cucurbit[n]urils: Selectivity and Applications. Journal of the American Chemical Society, 138(39), 13022-13029. doi:10.1021/jacs.6b07655 es_ES
dc.description.references Del Pozo, M., Fernández, Á., & Quintana, C. (2018). On-line competitive host-guest interactions in a turn-on fluorometric method to amantadine determination in human serum and pharmaceutical formulations. Talanta, 179, 124-130. doi:10.1016/j.talanta.2017.10.064 es_ES
dc.description.references Pozo, M. del, Blanco, E., Fatás, E., Hernández, P., & Quintana, C. (2012). New supramolecular interactions for electrochemical sensors development: different cucurbit[8]uril sensing platform designs. The Analyst, 137(18), 4302. doi:10.1039/c2an35325c es_ES
dc.description.references Del Pozo, M., Hernández, P., Hernández, L., & Quintana, C. (2011). The use of cucurbit[8]uril host–guest interactions in the development of an electrochemical sensor: characterization and application to tryptophan determination. Journal of Materials Chemistry, 21(35), 13657. doi:10.1039/c1jm12063h es_ES
dc.description.references Del Pozo, M., Mejías, J., Hernández, P., & Quintana, C. (2014). Cucurbit[8]uril-based electrochemical sensors as detectors in flow injection analysis. Application to dopamine determination in serum samples. Sensors and Actuators B: Chemical, 193, 62-69. doi:10.1016/j.snb.2013.11.074 es_ES
dc.description.references Demets, G. J.-F., Schneider, B. V. S., Correia, H. D., Gonçalves, R. R., Nobre, T. M., & Darbello Zaniquelli, M. E. (2008). A Technique to Produce Thin Cucurbit[6]uril Films. Journal of Nanoscience and Nanotechnology, 8(1), 432-435. doi:10.1166/jnn.2008.051 es_ES
dc.description.references Liu, M., Kan, J., Yao, Y., Zhang, Y., Bian, B., Tao, Z., … Xiao, X. (2019). Facile preparation and application of luminescent cucurbit[10]uril-based porous supramolecular frameworks. Sensors and Actuators B: Chemical, 283, 290-297. doi:10.1016/j.snb.2018.12.024 es_ES
dc.description.references Nicolas, H., Yuan, B., Zhang, J., Zhang, X., & Schönhoff, M. (2015). Cucurbit[8]uril as Nanocontainer in a Polyelectrolyte Multilayer Film: A Quantitative and Kinetic Study of Guest Uptake. Langmuir, 31(39), 10734-10742. doi:10.1021/acs.langmuir.5b02806 es_ES
dc.description.references Nicolas, H., Yuan, B., Zhang, X., & Schönhoff, M. (2016). Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule. Langmuir, 32(10), 2410-2418. doi:10.1021/acs.langmuir.6b00128 es_ES
dc.description.references Del Pozo, M., Alonso, M., Hernández, L., & Quintana, C. (2010). An Electrochemical Approach for the Cucurbit[7]uril/Carbendazim Supramolecular Inclusion Complex. Application to Carbendazim Determination in Apples. Electroanalysis, 23(1), 189-195. doi:10.1002/elan.201000442 es_ES
dc.description.references Saleh, N., Koner, A. L., & Nau, W. M. (2008). Activation and Stabilization of Drugs by Supramolecular pKaShifts: Drug‐Delivery Applications Tailored for Cucurbiturils. Angewandte Chemie International Edition, 47(29), 5398-5401. doi:10.1002/anie.200801054 es_ES
dc.description.references http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/; es_ES
dc.description.references Yu, F., Su, M., Tian, L., Wang, H., & Liu, H. (2018). Organic Solvent as Internal Standards for Quantitative and High-Throughput Liquid Interfacial SERS Analysis in Complex Media. Analytical Chemistry, 90(8), 5232-5238. doi:10.1021/acs.analchem.8b00008 es_ES
dc.description.references Chen, Q., Zuo, J., He, X., Mo, X., Tong, P., & Zhang, L. (2017). Enhanced fluorescence of terbium with thiabendazole and application in determining trace amounts of terbium and thiabendazole. Talanta, 162, 540-546. doi:10.1016/j.talanta.2016.10.036 es_ES
dc.description.references ASGHAR, M., YAQOOB, M., MUNAWAR, N., & NABI, A. (2016). Flow-Injection Determination of Thiabendazole Fungicide in Water Samples Using a Diperiodatocuprate(III)–Sulfuric Acid–Chemiluminescence System. Analytical Sciences, 32(3), 337-342. doi:10.2116/analsci.32.337 es_ES
dc.description.references Sousa, E. S., Pinto, L., & de Araujo, M. C. U. (2017). A chemometric cleanup using multivariate curve resolution in liquid chromatography: Quantification of pesticide residues in vegetables. Microchemical Journal, 134, 131-139. doi:10.1016/j.microc.2017.05.017 es_ES
dc.description.references Oliveira, A. M., Loureiro, H. C., de Jesus, F. F. S., & de Jesus, D. P. (2017). Electromembrane extraction and preconcentration of carbendazim and thiabendazole in water samples before capillary electrophoresis analysis. Journal of Separation Science, 40(7), 1532-1539. doi:10.1002/jssc.201601305 es_ES
dc.description.references Smitka, J., Lemos, A., Porel, M., Jockusch, S., Belderrain, T. R., Tesařová, E., & Da Silva, J. P. (2014). Phototransformation of benzimidazole and thiabendazole inside cucurbit[8]uril. Photochem. Photobiol. Sci., 13(2), 310-315. doi:10.1039/c3pp50336d es_ES
dc.description.references Montes-Navajas, P., Corma, A., & Garcia, H. (2008). Complexation and Fluorescence of Tricyclic Basic Dyes Encapsulated in Cucurbiturils. ChemPhysChem, 9(5), 713-720. doi:10.1002/cphc.200700735 es_ES
dc.description.references Shewale, M. N., Lande, D. N., & Gejji, S. P. (2016). Encapsulation of benzimidazole derivatives within cucurbit[7]uril: Density functional investigations. Journal of Molecular Liquids, 216, 309-317. doi:10.1016/j.molliq.2015.12.076 es_ES
dc.description.references An, Q., Dong, C., Zhu, W., Tao, C., Yang, H., Wang, Y., & Li, G. (2012). Cucurbit[8]uril as Building Block for Facile Fabrication of Well-Defined Organic Crystalline Nano-objects with Multiple Morphologies and Compositions. Small, 8(4), 562-568. doi:10.1002/smll.201101933 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem