- -

A chemical genetic roadmap to improved tomato flavor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A chemical genetic roadmap to improved tomato flavor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tieman, Denise es_ES
dc.contributor.author Zhu, Guangtao es_ES
dc.contributor.author Resende, Marcio F. R. es_ES
dc.contributor.author Lin, Tao es_ES
dc.contributor.author Nguyen, Cuong es_ES
dc.contributor.author Bies, Dawn es_ES
dc.contributor.author Rambla Nebot, Jose Luis es_ES
dc.contributor.author Ortiz Beltran, Kristty Stephanie es_ES
dc.contributor.author Taylor, Mark es_ES
dc.contributor.author Zhang, Bo es_ES
dc.contributor.author Ikeda, Hiroki es_ES
dc.contributor.author Liu, Zhongyuan es_ES
dc.contributor.author Fisher, Josef es_ES
dc.contributor.author Zemach, Itay es_ES
dc.contributor.author Monforte Gilabert, Antonio José es_ES
dc.contributor.author GRANELL RICHART, ANTONIO es_ES
dc.date.accessioned 2020-12-04T04:32:18Z
dc.date.available 2020-12-04T04:32:18Z
dc.date.issued 2017-01-27 es_ES
dc.identifier.issn 0036-8075 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156423
dc.description.abstract [EN] Modern commercial tomato varieties are substantially less flavorful than heirloom varieties. To understand and ultimately correct this deficiency, we quantified flavor-associated chemicals in 398 modern, heirloom, and wild accessions. A subset of these accessions was evaluated in consumer panels, identifying the chemicals that made the most important contributions to flavor and consumer liking. We found that modern commercial varieties contain significantly lower amounts of many of these important flavor chemicals than older varieties. Whole-genome sequencing and a genome-wide association study permitted identification of genetic loci that affect most of the target flavor chemicals, including sugars, acids, and volatiles. Together, these results provide an understanding of the flavor deficiencies in modern commercial varieties and the information necessary for the recovery of good flavor through molecular breeding. es_ES
dc.description.sponsorship This work was supported by the NSF (grant IOS-0923312 to H.K.), the China National Key Research and Development Program for Crop Breeding (grant 2016YFD0100307 to S.H.), the Leading Talents of Guangdong Province Program (grant 00201515 to S.H.), the National Natural Science Foundation of China (grant 31601756 to G.Z.), the European Research Council (grant ERC-2011-AdG 294691 YIELD to D.Z.), and the European Commission Horizon 2020 program (TRADITOM grant 634561 to A.G. and D.Z.) This work was also supported by the Chinese Academy of Agricultural Science (ASTIP-CAAS) and the Shenzhen municipal and Dapeng district governments. We acknowledge the assistance of L. Kates in fieldwork and volatile, sugar, and acid quantification. es_ES
dc.language Inglés es_ES
dc.publisher American Association for the Advancement of Science (AAAS) es_ES
dc.relation.ispartof Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title A chemical genetic roadmap to improved tomato flavor es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1126/science.aal1556 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/294691/EU/Is there a limit to yield?/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//0923312/US/Functional Genomics of Tomato Fruit Quality: Bridging the Gap between QTLs and Genes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//31601756/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NKRDPC//2016YFD0100307/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Leading Talents of Guangdong Province Program//00201515/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Tieman, D.; Zhu, G.; Resende, MFR.; Lin, T.; Nguyen, C.; Bies, D.; Rambla Nebot, JL.... (2017). A chemical genetic roadmap to improved tomato flavor. Science. 355(6323):391-394. https://doi.org/10.1126/science.aal1556 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1126/science.aal1556 es_ES
dc.description.upvformatpinicio 391 es_ES
dc.description.upvformatpfin 394 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 355 es_ES
dc.description.issue 6323 es_ES
dc.identifier.pmid 28126817 es_ES
dc.relation.pasarela S\355988 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder Leading Talents of Guangdong Province Program es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder National Key Research and Development Program of China es_ES
dc.contributor.funder European Commission
dc.description.references Food and Agriculture Organization of the United Nations; http://faostat.fao.org/site/339/default.aspx. es_ES
dc.description.references Tieman, D., Bliss, P., McIntyre, L. M., Blandon-Ubeda, A., Bies, D., Odabasi, A. Z., … Klee, H. J. (2012). The Chemical Interactions Underlying Tomato Flavor Preferences. Current Biology, 22(11), 1035-1039. doi:10.1016/j.cub.2012.04.016 es_ES
dc.description.references R. G. Buttery, R. Teranishi, R. A. Flath, L. C. Ling, Fresh tomato volatiles: Composition and sensory studies. Am. Chem. Soc. Symp. 388, 213–222 (1987). es_ES
dc.description.references Baldwin, E. A., Scott, J. W., Shewmaker, C. K., & Schuch, W. (2000). Flavor Trivia and Tomato Aroma: Biochemistry and Possible Mechanisms for Control of Important Aroma Components. HortScience, 35(6), 1013-1022. doi:10.21273/hortsci.35.6.1013 es_ES
dc.description.references Vogel, J. T., Tieman, D. M., Sims, C. A., Odabasi, A. Z., Clark, D. G., & Klee, H. J. (2010). Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Science of Food and Agriculture, 90(13), 2233-2240. doi:10.1002/jsfa.4076 es_ES
dc.description.references Zhang, B., Tieman, D. M., Jiao, C., Xu, Y., Chen, K., Fei, Z., … Klee, H. J. (2016). Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proceedings of the National Academy of Sciences, 113(44), 12580-12585. doi:10.1073/pnas.1613910113 es_ES
dc.description.references Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. doi:10.1038/ng.3117 es_ES
dc.description.references Fridman, E. (2004). Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions. Science, 305(5691), 1786-1789. doi:10.1126/science.1101666 es_ES
dc.description.references Zanor, M. I., Osorio, S., Nunes-Nesi, A., Carrari, F., Lohse, M., Usadel, B., … Fernie, A. R. (2009). RNA Interference of LIN5 in Tomato Confirms Its Role in Controlling Brix Content, Uncovers the Influence of Sugars on the Levels of Fruit Hormones, and Demonstrates the Importance of Sucrose Cleavage for Normal Fruit Development and Fertility. Plant Physiology, 150(3), 1204-1218. doi:10.1104/pp.109.136598 es_ES
dc.description.references Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., & Klee, H. J. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113-123. doi:10.1111/j.1365-313x.2010.04128.x es_ES
dc.description.references Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086 es_ES
dc.description.references Zierler, B., Siegmund, B., & Pfannhauser, W. (2004). Determination of off-flavour compounds in apple juice caused by microorganisms using headspace solid phase microextraction–gas chromatography–mass spectrometry. Analytica Chimica Acta, 520(1-2), 3-11. doi:10.1016/j.aca.2004.03.084 es_ES
dc.description.references Deikman, J., Kline, R., & Fischer, R. L. (1992). Organization of Ripening and Ethylene Regulatory Regions in a Fruit-Specific Promoter from Tomato (Lycopersicon esculentum). Plant Physiology, 100(4), 2013-2017. doi:10.1104/pp.100.4.2013 es_ES
dc.description.references Penarrubia, L., Aguilar, M., Margossian, L., & Fischer, R. L. (1992). An Antisense Gene Stimulates Ethylene Hormone Production during Tomato Fruit Ripening. The Plant Cell, 681-687. doi:10.1105/tpc.4.6.681 es_ES
dc.description.references Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Meir, A., Zamir, D., & Tadmor, Y. (2005). Carotenoid Pigmentation Affects the Volatile Composition of Tomato and Watermelon Fruits, As Revealed by Comparative Genetic Analyses. Journal of Agricultural and Food Chemistry, 53(8), 3142-3148. doi:10.1021/jf047927t es_ES
dc.description.references Oltman, A. E., Jervis, S. M., & Drake, M. A. (2014). Consumer Attitudes and Preferences for Fresh Market Tomatoes. Journal of Food Science, 79(10), S2091-S2097. doi:10.1111/1750-3841.12638 es_ES
dc.description.references Tieman, D. M., Zeigler, M., Schmelz, E. A., Taylor, M. G., Bliss, P., Kirst, M., & Klee, H. J. (2006). Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 57(4), 887-896. doi:10.1093/jxb/erj074 es_ES
dc.description.references Rambla, J. L., Alfaro, C., Medina, A., Zarzo, M., Primo, J., & Granell, A. (2015). Tomato fruit volatile profiles are highly dependent on sample processing and capturing methods. Metabolomics, 11(6), 1708-1720. doi:10.1007/s11306-015-0824-5 es_ES
dc.description.references Bartoshuk, L. ., Duffy, V. ., Fast, K., Green, B. ., Prutkin, J., & Snyder, D. . (2003). Labeled scales (e.g., category, Likert, VAS) and invalid across-group comparisons: what we have learned from genetic variation in taste. Food Quality and Preference, 14(2), 125-138. doi:10.1016/s0950-3293(02)00077-0 es_ES
dc.description.references A. B. Gilmour, B. Gogel, B. Cullis, R. Thompson R ASReml User Guide Release 3.0. VSN International. Hemel Hempstead, UK (2009). es_ES
dc.description.references Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., & Wang, J. (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15), 1966-1967. doi:10.1093/bioinformatics/btp336 es_ES
dc.description.references (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119 es_ES
dc.description.references Li, Y., Chen, W., Liu, E. Y., & Zhou, Y.-H. (2012). Single Nucleotide Polymorphism (SNP) Detection and Genotype Calling from Massively Parallel Sequencing (MPS) Data. Statistics in Biosciences, 5(1), 3-25. doi:10.1007/s12561-012-9067-4 es_ES
dc.description.references Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. doi:10.1186/1471-2156-11-94 es_ES
dc.description.references Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326-3328. doi:10.1093/bioinformatics/bts606 es_ES
dc.description.references Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. doi:10.1093/bioinformatics/btn129 es_ES
dc.description.references Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S., Freimer, N. B., … Eskin, E. (2010). Variance component model to account for sample structure in genome-wide association studies. Nature Genetics, 42(4), 348-354. doi:10.1038/ng.548 es_ES
dc.description.references Li, M.-X., Yeung, J. M. Y., Cherny, S. S., & Sham, P. C. (2011). Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Human Genetics, 131(5), 747-756. doi:10.1007/s00439-011-1118-2 es_ES
dc.description.references Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2004). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. doi:10.1093/bioinformatics/bth457 es_ES
dc.description.references Craig, D. W., Pearson, J. V., Szelinger, S., Sekar, A., Redman, M., Corneveaux, J. J., … Huentelman, M. J. (2008). Identification of genetic variants using bar-coded multiplexed sequencing. Nature Methods, 5(10), 887-893. doi:10.1038/nmeth.1251 es_ES
dc.description.references Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324 es_ES
dc.description.references Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem