- -

Optimisation of ultrasound liver perfusion through a digital reference object and analysis tool

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimisation of ultrasound liver perfusion through a digital reference object and analysis tool

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alberich-Bayarri, Ángel es_ES
dc.contributor.author Tomás-Cucarella, Jose es_ES
dc.contributor.author Torregrosa-Lloret, Alfredo es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.contributor.author Martí-Bonmatí, Luis es_ES
dc.date.accessioned 2020-12-04T04:32:29Z
dc.date.available 2020-12-04T04:32:29Z
dc.date.issued 2019-04-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156427
dc.description.abstract [EN] Background Conventional ultrasound (US) provides important qualitative information, although there is a need to evaluate the influence of the input parameters on the output signal and standardise the acquisition for an adequate quantitative perfusion assessment. The present study analyses how the variation in the input parameters influences the measurement of the perfusion parameters. Methods A software tool with simulator of the conventional US signal was created, and the influence of the different input variables on the derived biomarkers was analysed by varying the image acquisition configuration. The input parameters considered were the dynamic range, gain, and frequency of the transducer. Their influence on mean transit time (MTT), the area under the curve (AUC), maximum intensity (MI), and time to peak (TTP) parameters as outputs of the quantitative perfusion analysis was evaluated. A group of 13 patients with hepatocarcinoma was analysed with both a commercial tool and an in-house developed software. Results The optimal calculated inputs which minimise errors while preserving images¿ readability consisted of gain of 15¿dB, dynamic range of 60¿dB, and frequency of 1.5¿MHz. The comparison between the in-house developed software and the commercial software provided different values for MTT and AUC, while MI and TTP were highly similar. Conclusion Input parameter selection introduces variability and errors in US perfusion parameter estimation. Our results may add relevant insight into the current knowledge of conventional US perfusion and its use in lesions characterisation, playing in favour of optimised standardised parameter configuration to minimise variability. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof European Radiology Experimental es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Biomarkers es_ES
dc.subject Liver es_ES
dc.subject Perfusion imaging es_ES
dc.subject Phantoms (imaging) es_ES
dc.subject Ultrasonography es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Optimisation of ultrasound liver perfusion through a digital reference object and analysis tool es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s41747-019-0086-5 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Alberich-Bayarri, Á.; Tomás-Cucarella, J.; Torregrosa-Lloret, A.; Saiz Rodríguez, FJ.; Martí-Bonmatí, L. (2019). Optimisation of ultrasound liver perfusion through a digital reference object and analysis tool. European Radiology Experimental. 3:1-10. https://doi.org/10.1186/s41747-019-0086-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s41747-019-0086-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.identifier.eissn 2509-9280 es_ES
dc.identifier.pmid 30945029 es_ES
dc.identifier.pmcid PMC6447630 es_ES
dc.relation.pasarela S\413188 es_ES
dc.description.references Parker JM, Weller MW, Feinstein LM et al (2013) Safety of ultrasound contrast agents in patients with known or suspected cardiac shunts. Am J Cardiol 112:1039–1045. es_ES
dc.description.references Dhamija E, Paul SB (2014) Role of contrast enhanced ultrasound in hepatic imaging. Trop Gastroenterol 35:141–151. es_ES
dc.description.references Wang XY, Kang LK, Lan CY (2014) Contrast-enhanced ultrasonography in diagnosis of benign and malignant breast lesions. Eur J Gynaecol Oncol 35:415–420. es_ES
dc.description.references Wang S, Yang W, Zhang H, Xu Q, Yan K (2015) The role of contrast-enhanced ultrasound in selection indication and improveing diagnosis for transthoracic biopsy in peripheral pulmonary and mediastinal lesions. Biomed Res Int 2015:231782. es_ES
dc.description.references Green MA, Mathias CJ, Willis LR, et al (2007) Assessment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion. Nucl Med Biol 34:247–255. es_ES
dc.description.references Daghini E, Primak AN, Chade AR, et al (2007) Assessment of renal hemodynamics and function in pigs with 64-section multidetector CT: comparison with electron-beam CT. Radiology 243:405–412. es_ES
dc.description.references Martin DR, Sharma P, Salman K, et al (2008) Individual kidney blood flow measured with contrast-enhanced first-pass perfusion MR imaging. Radiology 246:241–248. es_ES
dc.description.references Tang MX, Mulvana H, Gauthier T, et al (2011) Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus 1:520–539. es_ES
dc.description.references Gauthier TP, Averkiou MA, Leen EL (2011) Perfusion quantification using dynamic contrast-enhanced ultrasound: the impact of dynamic range and gain on time-intensity curves. Ultrasonics 51:102–106. es_ES
dc.description.references Möller I, Janta I, Backhaus M, et al (2017) The 2017 EULAR standardised procedures for ultrasound imaging in rheumatology. Ann Rheum Dis. 76:1974–1979. es_ES
dc.description.references Pitre-Champagnat S, Coiffier B, Jourdain L, Benatsou B, Leguerney I, Lassau N (2017) Toward a standardization of ultrasound scanners for dynamic contrast-enhanced ultrasonography: methodology and phantoms. Ultrasound Med Biol. https://doi.org/10.1016/j.ultrasmedbio.2017.06.032 es_ES
dc.description.references Shunichi S, Hiroko I, Fuminori M, Waki H (2009) Definition of contrast enhancement phases of the liver using a perfluoro-based microbubble agent, perflubutane microbubbles. Ultrasound Med Biol 35:1819–1827. doi es_ES
dc.description.references Fairbank WM Jr, Scully MO (1977) A new noninvasive technique for cardiac pressure measurement: resonant scattering of ultrasound from bubbles. IEEE Trans Biomed Eng 24:107–110. es_ES
dc.description.references Malm S, Frigstad S, Helland F, Oye K, Slordahl S, Skjarpe T (2005) Quantification of resting myocardial blood flow velocity in normal humans using real-time contrast echocardiography. A feasibility study. Cardiovasc Ultrasound 3:16. es_ES
dc.description.references Arditi M, Frinking PJ, Zhou X, Rognin NG (2006) A new formalism for the quantification of tissue perfusion by the destruction-replenishment method in contrast ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 53:1118–1129. es_ES
dc.description.references Savic RM, Jonker DM, Kerbusch T, Karlsson MO (2007) Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn 34:711–726. es_ES
dc.description.references Averkiou M, Lampaskis M, Kyriakopoulou K, et al (2010) Quantification of tumor microvascularity with respiratory gated contrast enhanced ultrasound for monitoring therapy. Ultrasound Med Biol 36:68–77. es_ES
dc.description.references Kuenen MP, Mischi M, Wijkstra H (2011) Contrast-ultrasound diffusion imaging for localization of prostate cancer. IEEE Trans Med Imaging 30:1493–1502. es_ES
dc.description.references Garcia D, Le Tarnec L, Muth S, Montagnon E, Porée J, Cloutier G(2013) Stolt’s f-k migration for plane wave ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 60:1853–1867. es_ES
dc.description.references Brands J, Vink H, Van Teeffelen JW (2011) Comparison of four mathematical models to analyze indicator-dilution curves in the coronary circulation. Med Biol Eng Comput 49:1471–1479. es_ES
dc.description.references Zhou JH, Cao LH, Zheng W, Liu M, Han F, Li AH (2011) Contrast-enhanced gray-scale ultrasound for quantitative evaluation of tumor response to chemotherapy: preliminary results with a mouse hepatoma model. AJR Am J Roentgenol 196:W13-17. es_ES
dc.description.references Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasoundinduced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483 es_ES
dc.description.references Riascos P, Velasco-Medina J (2005) Efectos Biológicos y Consideraciones de Seguridad en Ultrasonido. Available via https://www.yumpu.com/es/document/view/15350629/efectos-biologicos-y-consideraciones-de-seguridad-en-ultrasonido es_ES
dc.description.references de Jong N, ten Cate FJ, Vletter WB, Roelandt JR (1993) Quantification of transpulmonary echocontrast effects. Ultrasound Med Biol 19:279–288 es_ES
dc.description.references Quaia E (2011) Assessment of tissue perfusion by contrast-enhanced ultrasound. Eur Radiol 21:604–615. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem