- -

Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carceller-Carceller, Jose Miguel es_ES
dc.contributor.author Martínez Galán, Julián Paul es_ES
dc.contributor.author Monti, Rubens es_ES
dc.contributor.author Bassan, Juliana Cristina es_ES
dc.contributor.author Filice, Marco es_ES
dc.contributor.author Iborra Chornet, Sara es_ES
dc.contributor.author Yu, Jihong es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-12-11T04:34:24Z
dc.date.available 2020-12-11T04:34:24Z
dc.date.issued 2019-02-21 es_ES
dc.identifier.issn 1463-9262 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156865
dc.description.abstract [EN] Production of citrus flavonoids prunin and naringenin was performed selectively through the enzyme hydrolysis of naringin, a flavonoid glycoside abundant in grapefruit wastes. To produce the monoglycoside flavonoid, prunin, crude naringinase from Penicillium decumbens was purified by a single purification step resulting in an enzyme with high -rhamnosidase activity. Both crude and purified enzymes were covalently immobilized on graphene oxide. The activity of the immobilized enzymes at different pH levels and temperatures, and the thermal stability were determined and compared with those exhibited by the free naringinases using specific substrates: p-nitrophenyl--d-glucoside (Glc-pNP) and p-nitrophenyl-alpha-l-rhamnopyranoside (Rha-pNP). The crude and purified naringinase supported on GO were tested in the hydrolysis of naringin, giving naringenin and prunin, respectively, in excellent yields. The supported enzymes can be reused many times without loss of activity. The naringinase stabilized on GO has high potential to produce the valuable citrus flavonoids prunin and naringenin. es_ES
dc.description.sponsorship Authors acknowledge the financial support from MICINN Project CTQ-2015-67592-P and Program Severo Ochoa (SEV-2016-0683). JVC thanks Universitat Politecnica de Valencia for predoctoral fellowships. JY and AC thank the support from the National Natural Science Foundation of China (Grant No. 21320102001) and the 111 Project (Grant No. B17020). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Green Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8gc03661f es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21320102001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MOE//B17020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Carceller-Carceller, JM.; Martínez Galán, JP.; Monti, R.; Bassan, JC.; Filice, M.; Iborra Chornet, S.; Yu, J.... (2019). Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green Chemistry. 21(4):839-849. https://doi.org/10.1039/c8gc03661f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8gc03661f es_ES
dc.description.upvformatpinicio 839 es_ES
dc.description.upvformatpfin 849 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\382572 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Ministry of Education, China es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Puri, M., & Banerjee, U. C. (2000). Production, purification, and characterization of the debittering enzyme naringinase. Biotechnology Advances, 18(3), 207-217. doi:10.1016/s0734-9750(00)00034-3 es_ES
dc.description.references Vila-Real, H., Alfaia, A. J., Rosa, M. E., Calado, A. R., & Ribeiro, M. H. L. (2010). An innovative sol–gel naringinase bioencapsulation process for glycosides hydrolysis. Process Biochemistry, 45(6), 841-850. doi:10.1016/j.procbio.2010.02.004 es_ES
dc.description.references C. Grassin and P.Fauquembergue , in Industrial Enzymology , ed. S. West and T. Godfrey , Nature Publishing Group , New York , 2nd edn, 1996 , p. 225 es_ES
dc.description.references Tsen, H.-Y., & Tsai, S.-Y. (1988). Comparison of the kinetics and factors affecting the stabilities of chitin-immobilized naringinases from two fungal sources. Journal of Fermentation Technology, 66(2), 193-198. doi:10.1016/0385-6380(88)90047-7 es_ES
dc.description.references SOARES, N. F. F., & HOTCHKISS, J. H. (1998). Naringinase Immobilization in Packaging Films for Reducing Naringin Concentration in Grapefruit Juice. Journal of Food Science, 63(1), 61-65. doi:10.1111/j.1365-2621.1998.tb15676.x es_ES
dc.description.references Puri, M., Kaur, H., & Kennedy, J. F. (2005). Covalent immobilization of naringinase for the transformation of a flavonoid. Journal of Chemical Technology & Biotechnology, 80(10), 1160-1165. doi:10.1002/jctb.1303 es_ES
dc.description.references Norouzian, D., Hosseinzadeh, A., Inanlou, D. N., & Moazami, N. (1999). World Journal of Microbiology and Biotechnology, 15(4), 501-502. doi:10.1023/a:1008980018481 es_ES
dc.description.references Nishita, M., Park, S.-Y., Nishio, T., Kamizaki, K., Wang, Z., Tamada, K., … Minami, Y. (2017). Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Scientific Reports, 7(1). doi:10.1038/s41598-016-0028-x es_ES
dc.description.references Zhang, Y., Wu, C., Guo, S., & Zhang, J. (2013). Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnology Reviews, 2(1), 27-45. doi:10.1515/ntrev-2012-0078 es_ES
dc.description.references Mathesh, M., Luan, B., Akanbi, T. O., Weber, J. K., Liu, J., Barrow, C. J., … Yang, W. (2016). Opening Lids: Modulation of Lipase Immobilization by Graphene Oxides. ACS Catalysis, 6(7), 4760-4768. doi:10.1021/acscatal.6b00942 es_ES
dc.description.references Li, W., Wen, H., Shi, Q., & Zheng, G. (2016). Study on immobilization of (+) γ-lactamase using a new type of epoxy graphene oxide carrier. Process Biochemistry, 51(2), 270-276. doi:10.1016/j.procbio.2015.11.030 es_ES
dc.description.references Hong, S.-G., Kim, J. H., Kim, R. E., Kwon, S.-J., Kim, D. W., Jung, H.-T., … Kim, J. (2016). Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors. Biotechnology and Bioprocess Engineering, 21(4), 573-579. doi:10.1007/s12257-016-0373-4 es_ES
dc.description.references Liu, F., Piao, Y., Choi, K. S., & Seo, T. S. (2012). Fabrication of free-standing graphene composite films as electrochemical biosensors. Carbon, 50(1), 123-133. doi:10.1016/j.carbon.2011.07.061 es_ES
dc.description.references Wang, Z., Zhou, X., Zhang, J., Boey, F., & Zhang, H. (2009). Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. The Journal of Physical Chemistry C, 113(32), 14071-14075. doi:10.1021/jp906348x es_ES
dc.description.references Singh, R. K., Kumar, R., & Singh, D. P. (2016). Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Advances, 6(69), 64993-65011. doi:10.1039/c6ra07626b es_ES
dc.description.references Vila-Real, H., Alfaia, A. J., Bronze, M. R., Calado, A. R. T., & Ribeiro, M. H. L. (2011). Enzymatic Synthesis of the Flavone Glucosides, Prunin and Isoquercetin, and the Aglycones, Naringenin and Quercetin, with Selective α-L-Rhamnosidase and β-D-Glucosidase Activities of Naringinase. Enzyme Research, 2011, 1-11. doi:10.4061/2011/692618 es_ES
dc.description.references Mamma, D., Kalogeris, E., Hatzinikolaou, D. G., Lekanidou, A., Kekos, D., Macris, B. J., & Christakopoulos, P. (2004). Biochemical Characterization of the Multi-enzyme System Produced byPenicillium decumbensGrown on Rutin. Food Biotechnology, 18(1), 1-18. doi:10.1081/fbt-120030382 es_ES
dc.description.references Chang, H.-Y., Lee, Y.-B., Bae, H.-A., Huh, J.-Y., Nam, S.-H., Sohn, H.-S., … Lee, S.-B. (2011). Purification and characterisation of Aspergillus sojae naringinase: The production of prunin exhibiting markedly enhanced solubility with in vitro inhibition of HMG-CoA reductase. Food Chemistry, 124(1), 234-241. doi:10.1016/j.foodchem.2010.06.024 es_ES
dc.description.references Yadav, S., Yadava, S., & Yadav, K. D. S. (2013). Purification and characterization of α-l-rhamnosidase from Penicillium corylopholum MTCC-2011. Process Biochemistry, 48(9), 1348-1354. doi:10.1016/j.procbio.2013.05.001 es_ES
dc.description.references Zhu, Y., Jia, H., Xi, M., Xu, L., Wu, S., & Li, X. (2017). Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids. Food Chemistry, 214, 39-46. doi:10.1016/j.foodchem.2016.06.108 es_ES
dc.description.references Zhang, T., Yuan, W., Li, M., Miao, M., & Mu, W. (2018). Purification and characterization of an intracellular α-l-rhamnosidase from a newly isolated strain, Alternaria alternata SK37.001. Food Chemistry, 269, 63-69. doi:10.1016/j.foodchem.2018.06.134 es_ES
dc.description.references Vila-Real, H., Alfaia, A. J., Rosa, J. N., Gois, P. M. P., Rosa, M. E., Calado, A. R. T., & Ribeiro, M. H. (2011). α-Rhamnosidase and β-glucosidase expressed by naringinase immobilized on new ionic liquid sol–gel matrices: Activity and stability studies. Journal of Biotechnology, 152(4), 147-158. doi:10.1016/j.jbiotec.2010.08.005 es_ES
dc.description.references Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., … Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76-85. doi:10.1016/0003-2697(85)90442-7 es_ES
dc.description.references Erickson, H. P. (2009). Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biological Procedures Online, 11(1), 32-51. doi:10.1007/s12575-009-9008-x es_ES
dc.description.references Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., & Guo, S. (2010). Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir, 26(9), 6083-6085. doi:10.1021/la904014z es_ES
dc.description.references Marolewski, A. (1996). Fundamentals of Enzyme Kinetics. Revised Edition By Athel Cornish-Bowden. Portland Press, London. 1995. xiii + 343 pp. 17.5 cm × 24.5 cm. ISBN 1-85578-072-0. $29.00. Journal of Medicinal Chemistry, 39(4), 1010-1011. doi:10.1021/jm9508447 es_ES
dc.description.references Romero, C., Manjón, A., Bastida, J., & Iborra, J. (1985). A method for assaying the rhamnosidase activity of naringinase. Analytical Biochemistry, 149(2), 566-571. doi:10.1016/0003-2697(85)90614-1 es_ES
dc.description.references Fox, D. W., Savage, W. L., & Wender, S. H. (1953). Hydrolysis of Some Flavonoid Rhamnoglucosides to Flavonoid Glucosides. Journal of the American Chemical Society, 75(10), 2504-2505. doi:10.1021/ja01106a507 es_ES
dc.description.references Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. doi:10.1021/ac60147a030 es_ES
dc.description.references LAEMMLI, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680-685. doi:10.1038/227680a0 es_ES
dc.description.references Heukeshoven, J., & Dernick, R. (1985). Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis, 6(3), 103-112. doi:10.1002/elps.1150060302 es_ES
dc.description.references Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev., 42(15), 6223-6235. doi:10.1039/c3cs60075k es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem