- -

Nanocomposites based on poly(glycerol sebacate) with silica nanoparticles with potential application in dental tissue engineering

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nanocomposites based on poly(glycerol sebacate) with silica nanoparticles with potential application in dental tissue engineering

Mostrar el registro completo del ítem

Tallá Ferrer, C.; Vilariño, G.; Rizk, M.; Sydow, H.; Vallés Lluch, A. (2020). Nanocomposites based on poly(glycerol sebacate) with silica nanoparticles with potential application in dental tissue engineering. International Journal of Polymeric Materials. 69(12):761-772. https://doi.org/10.1080/00914037.2019.1616197

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/157284

Ficheros en el ítem

Metadatos del ítem

Título: Nanocomposites based on poly(glycerol sebacate) with silica nanoparticles with potential application in dental tissue engineering
Autor: Tallá Ferrer, C. Vilariño, Guillermo Rizk, M. Sydow, H.G. Vallés Lluch, Ana
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Nanocomposites based on poly(glycerol sebacate) with silica nanoparticles were synthesized to explore their potential use in the biomedical field. The nanoparticles were two distinct polyhedral oligomeric silsesquioxanes ...[+]
Palabras clave: Elastomer , Hydroxyapatite , Nanocomposite , Poly(glycerol sebacate) , POSS
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Polymeric Materials. (issn: 0091-4037 )
DOI: 10.1080/00914037.2019.1616197
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/00914037.2019.1616197
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2015-65401-C3-2-R/ES/SOPORTES POLIMERICOS MULTIFUNCIONALES PARA CO-CULTIVO CELULAR INDIRECTO Y ESTIMULACION QUIMICA DESTINADOS A MIMETIZAR TEJIDO RENAL IN VITRO/
info:eu-repo/grantAgreement/DFG//MWK INST 1525%2F39-1 FUGG/
info:eu-repo/grantAgreement/GVA//AEST%2F2018%2F014/
Descripción: "This is an Accepted Manuscript of an article published by Taylor & Francis inInternational Journal of Polymeric Materials and Polymeric Biomaterials on AUG 08 2020, available online: https://www.tandfonline.com/doi/full/10.1080/00914037.2019.1616197"
Agradecimientos:
The authors acknowledge Dr. Kirsten Techmer from Geoscience Center of the Georg-August-University Gottingen for performing the EDX-SEM analysis, the assistance and advice of the Julich Center for Neutron Science (JCNS) and ...[+]
Tipo: Artículo

References

Wang, Y., Ameer, G. A., Sheppard, B. J., & Langer, R. (2002). A tough biodegradable elastomer. Nature Biotechnology, 20(6), 602-606. doi:10.1038/nbt0602-602

Loh, X. J., Abdul Karim, A., & Owh, C. (2015). Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications. Journal of Materials Chemistry B, 3(39), 7641-7652. doi:10.1039/c5tb01048a

Rai, R., Tallawi, M., Grigore, A., & Boccaccini, A. R. (2012). Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, 37(8), 1051-1078. doi:10.1016/j.progpolymsci.2012.02.001 [+]
Wang, Y., Ameer, G. A., Sheppard, B. J., & Langer, R. (2002). A tough biodegradable elastomer. Nature Biotechnology, 20(6), 602-606. doi:10.1038/nbt0602-602

Loh, X. J., Abdul Karim, A., & Owh, C. (2015). Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications. Journal of Materials Chemistry B, 3(39), 7641-7652. doi:10.1039/c5tb01048a

Rai, R., Tallawi, M., Grigore, A., & Boccaccini, A. R. (2012). Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, 37(8), 1051-1078. doi:10.1016/j.progpolymsci.2012.02.001

Serrano, M. C., Chung, E. J., & Ameer, G. A. (2010). Advances and Applications of Biodegradable Elastomers in Regenerative Medicine. Advanced Functional Materials, 20(2), 192-208. doi:10.1002/adfm.200901040

Zhang, X., Jia, C., Qiao, X., Liu, T., & Sun, K. (2016). Porous poly(glycerol sebacate) (PGS) elastomer scaffolds for skin tissue engineering. Polymer Testing, 54, 118-125. doi:10.1016/j.polymertesting.2016.07.006

MacDonald, R. A., Laurenzi, B. F., Viswanathan, G., Ajayan, P. M., & Stegemann, J. P. (2005). Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. Journal of Biomedical Materials Research Part A, 74A(3), 489-496. doi:10.1002/jbm.a.30386

Saito, N., Usui, Y., Aoki, K., Narita, N., Shimizu, M., Hara, K., … Endo, M. (2009). Carbon nanotubes: biomaterial applications. Chemical Society Reviews, 38(7), 1897. doi:10.1039/b804822n

Chawla, R., Tan, A., Ahmed, M., Crowley, C., Moiemen, N. S., Cui, Z., … Seifalian, A. M. (2014). A polyhedral oligomeric silsesquioxane–based bilayered dermal scaffold seeded with adipose tissue–derived stem cells: in vitro assessment of biomechanical properties. Journal of Surgical Research, 188(2), 361-372. doi:10.1016/j.jss.2014.01.006

Campbell, K., Craig, D. Q. M., & McNally, T. (2008). Poly(ethylene glycol) layered silicate nanocomposites for retarded drug release prepared by hot-melt extrusion. International Journal of Pharmaceutics, 363(1-2), 126-131. doi:10.1016/j.ijpharm.2008.06.027

Scott, D. W. (1946). Thermal Rearrangement of Branched-Chain Methylpolysiloxanes1. Journal of the American Chemical Society, 68(3), 356-358. doi:10.1021/ja01207a003

Conejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406-419. doi:10.1016/j.eurpolymj.2017.01.001

Gao, J., Crapo, P. M., & Wang, Y. (2006). Macroporous Elastomeric Scaffolds with Extensive Micropores for Soft Tissue Engineering. Tissue Engineering, 12(4), 917-925. doi:10.1089/ten.2006.12.917

Klimek, J., Hellwig, E., & Ahrens, G. (1982). Fluoride Taken Up by Plaque, by the Underlying Enamel and by Clean Enamel from Three Fluoride Compounds in vitro. Caries Research, 16(2), 156-161. doi:10.1159/000260592

Zhao, X., Wu, Y., Du, Y., Chen, X., Lei, B., Xue, Y., & Ma, P. X. (2015). A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. Journal of Materials Chemistry B, 3(16), 3222-3233. doi:10.1039/c4tb01693a

Wu, Y., Shi, R., Chen, D., Zhang, L., & Tian, W. (2011). Nanosilica filled poly(glycerol-sebacate-citrate) elastomers with improved mechanical properties, adjustable degradability, and better biocompatibility. Journal of Applied Polymer Science, 123(3), 1612-1620. doi:10.1002/app.34556

Liang, S.-L., Cook, W. D., Thouas, G. A., & Chen, Q.-Z. (2010). The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-Bioglass® elastomeric composites. Biomaterials, 31(33), 8516-8529. doi:10.1016/j.biomaterials.2010.07.105

Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017

Wahab, M. A., Kim, I., & Ha, C.-S. (2003). Microstructure and properties of polyimide/poly(vinylsilsesquioxane) hybrid composite films. Polymer, 44(16), 4705-4713. doi:10.1016/s0032-3861(03)00429-4

Yan Song, X., Ping Geng, H., & Li, Q. F. (2006). The synthesis and characterization of polystyrene/magnetic polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer, 47(9), 3049-3056. doi:10.1016/j.polymer.2006.02.055

Kerativitayanan, P., & Gaharwar, A. K. (2015). Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates. Acta Biomaterialia, 26, 34-44. doi:10.1016/j.actbio.2015.08.025

Liu, J., Zheng, H., Poh, P., Machens, H.-G., & Schilling, A. (2015). Hydrogels for Engineering of Perfusable Vascular Networks. International Journal of Molecular Sciences, 16(7), 15997-16016. doi:10.3390/ijms160715997

Gibson, L. J., & Ashby, M. F. (1997). Cellular Solids. doi:10.1017/cbo9781139878326

Vallés Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2009). Biomimetic apatite coating on P(EMA-co-HEA)/SiO2 hybrid nanocomposites. Polymer, 50(13), 2874-2884. doi:10.1016/j.polymer.2009.04.022

Jones, J. R. (2006). Scaffolds for Cell and Tissue Engineering. Wiley Encyclopedia of Biomedical Engineering. doi:10.1002/9780471740360.ebs1401

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem