- -

Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles

Mostrar el registro completo del ítem

Luján, JM.; Climent, H.; Ruiz-Rosales, S.; Moratal, A. (2019). Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles. International Journal of Engine Research. 20(8-9):877-888. https://doi.org/10.1177/1468087418792353

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/157574

Ficheros en el ítem

Metadatos del ítem

Título: Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles
Autor: Luján, José M. Climent, H. Ruiz-Rosales, Santiago Moratal, Ausias
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] The effect of low ambient temperature on diesel raw pollutant emissions is analysed in two different driving cycles: NEDC and WLTC. The study is focused on hydrocarbons, carbon monoxide, nitrogen oxides and fuel ...[+]
Palabras clave: Diesel engine , Pollutant emissions , Fuel consumption , Cold conditions , Driving cycles
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087418792353
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1468087418792353
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//FPI-S1-2015-2512/
Descripción: This is the author s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418792353
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors acknowledge the 'Apoyo para la investigacion y Desarrollo (PAID)', grant for ...[+]
Tipo: Artículo

References

Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2014). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17(1), 15-27. doi:10.1007/s10098-014-0793-9

Tan, Q., & Hu, Y. (2016). A study on the combustion and emission performance of diesel engines under different proportions of O2 & N2 & CO2. Applied Thermal Engineering, 108, 508-515. doi:10.1016/j.applthermaleng.2016.07.151

Torregrosa, A. J., Olmeda, P., Martín, J., & Degraeuwe, B. (2006). Experiments on the influence of inlet charge and coolant temperature on performance and emissions of a DI Diesel engine. Experimental Thermal and Fluid Science, 30(7), 633-641. doi:10.1016/j.expthermflusci.2006.01.002 [+]
Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2014). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17(1), 15-27. doi:10.1007/s10098-014-0793-9

Tan, Q., & Hu, Y. (2016). A study on the combustion and emission performance of diesel engines under different proportions of O2 & N2 & CO2. Applied Thermal Engineering, 108, 508-515. doi:10.1016/j.applthermaleng.2016.07.151

Torregrosa, A. J., Olmeda, P., Martín, J., & Degraeuwe, B. (2006). Experiments on the influence of inlet charge and coolant temperature on performance and emissions of a DI Diesel engine. Experimental Thermal and Fluid Science, 30(7), 633-641. doi:10.1016/j.expthermflusci.2006.01.002

Torregrosa, A. J., Broatch, A., Olmeda, P., & Romero, C. (2008). Assessment of the influence of different cooling system configurations on engine warm-up, emissions and fuel consumption. International Journal of Automotive Technology, 9(4), 447-458. doi:10.1007/s12239-008-0054-1

Weilenmann, M., Favez, J.-Y., & Alvarez, R. (2009). Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories. Atmospheric Environment, 43(15), 2419-2429. doi:10.1016/j.atmosenv.2009.02.005

Li, Q., Shayler, P., McGhee, M., & La Rocca, A. (2016). The initiation and development of combustion under cold idling conditions using a glow plug in diesel engines. International Journal of Engine Research, 18(3), 240-255. doi:10.1177/1468087416652266

Tauzia, X., Maiboom, A., Karaky, H., & Chesse, P. (2018). Experimental analysis of the influence of coolant and oil temperature on combustion and emissions in an automotive diesel engine. International Journal of Engine Research, 20(2), 247-260. doi:10.1177/1468087417749391

Ludykar, D., Westerholm, R., & Almén, J. (1999). Cold start emissions at +22, −7 and −20°C ambient temperatures from a three-way catalyst (TWC) car: regulated and unregulated exhaust components. Science of The Total Environment, 235(1-3), 65-69. doi:10.1016/s0048-9697(99)00190-4

Weilenmann, M., Soltic, P., Saxer, C., Forss, A.-M., & Heeb, N. (2005). Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment, 39(13), 2433-2441. doi:10.1016/j.atmosenv.2004.03.081

Dardiotis, C., Martini, G., Marotta, A., & Manfredi, U. (2013). Low-temperature cold-start gaseous emissions of late technology passenger cars. Applied Energy, 111, 468-478. doi:10.1016/j.apenergy.2013.04.093

Pavlovic, J., Marotta, A., & Ciuffo, B. (2016). CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures. Applied Energy, 177, 661-670. doi:10.1016/j.apenergy.2016.05.110

Tsokolis, D., Tsiakmakis, S., Dimaratos, A., Fontaras, G., Pistikopoulos, P., Ciuffo, B., & Samaras, Z. (2016). Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol. Applied Energy, 179, 1152-1165. doi:10.1016/j.apenergy.2016.07.091

Giakoumis, E., & Zachiotis, A. (2017). Investigation of a Diesel-Engined Vehicle’s Performance and Emissions during the WLTC Driving Cycle—Comparison with the NEDC. Energies, 10(2), 240. doi:10.3390/en10020240

Myung, C.-L., Jang, W., Kwon, S., Ko, J., Jin, D., & Park, S. (2017). Evaluation of the real-time de-NO x performance characteristics of a LNT-equipped Euro-6 diesel passenger car with various vehicle emissions certification cycles. Energy, 132, 356-369. doi:10.1016/j.energy.2017.05.089

Marotta, A., Pavlovic, J., Ciuffo, B., Serra, S., & Fontaras, G. (2015). Gaseous Emissions from Light-Duty Vehicles: Moving from NEDC to the New WLTP Test Procedure. Environmental Science & Technology, 49(14), 8315-8322. doi:10.1021/acs.est.5b01364

Luján, J. M., Climent, H., García-Cuevas, L. M., & Moratal, A. (2018). Pollutant emissions and diesel oxidation catalyst performance at low ambient temperatures in transient load conditions. Applied Thermal Engineering, 129, 1527-1537. doi:10.1016/j.applthermaleng.2017.10.138

Ko, J., Jin, D., Jang, W., Myung, C.-L., Kwon, S., & Park, S. (2017). Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures. Applied Energy, 187, 652-662. doi:10.1016/j.apenergy.2016.11.105

Armas, O., García-Contreras, R., & Ramos, A. (2016). On-line thermodynamic diagnosis of diesel combustion process with paraffinic fuels in a vehicle tested under NEDC. Journal of Cleaner Production, 138, 94-102. doi:10.1016/j.jclepro.2016.01.023

Robinson, K., Ye, S., Yap, Y., & Kolaczkowski, S. T. (2013). Application of a methodology to assess the performance of a full-scale diesel oxidation catalyst during cold and hot start NEDC drive cycles. Chemical Engineering Research and Design, 91(7), 1292-1306. doi:10.1016/j.cherd.2013.02.022

Konstantas, G., & Stamatelos, A. (2004). Quality assurance of exhaust emissions test data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(8), 901-914. doi:10.1243/0954407041581075

Pakko, J. D. (2009). Reconstruction of Time-Resolved Vehicle Emissions Measurements by Deconvolution. SAE International Journal of Fuels and Lubricants, 2(1), 697-707. doi:10.4271/2009-01-1513

Flores, B. E. (1986). A pragmatic view of accuracy measurement in forecasting. Omega, 14(2), 93-98. doi:10.1016/0305-0483(86)90013-7

Kandylas, I. P., Stamatelos, A. M., & Dimitriadis, S. G. (1999). Statistical uncertainty in automotive emissions testing. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 213(5), 491-502. doi:10.1243/0954407991527053

Sileghem, L., Bosteels, D., May, J., Favre, C., & Verhelst, S. (2014). Analysis of vehicle emission measurements on the new WLTC, the NEDC and the CADC. Transportation Research Part D: Transport and Environment, 32, 70-85. doi:10.1016/j.trd.2014.07.008

Stefanopoulou, A. G., Kolmanovsky, I., & Freudenberg, J. S. (2000). Control of variable geometry turbocharged diesel engines for reduced emissions. IEEE Transactions on Control Systems Technology, 8(4), 733-745. doi:10.1109/87.852917

Control of diesel engines. (1998). IEEE Control Systems, 18(5), 53-71. doi:10.1109/37.722253

Peng, H., Cui, Y., Shi, L., & Deng, K. (2008). Effects of exhaust gas recirculation (EGR) on combustion and emissions during cold start of direct injection (DI) diesel engine. Energy, 33(3), 471-479. doi:10.1016/j.energy.2007.10.014

Bermúdez, V., Lujan, J. M., Pla, B., & Linares, W. G. (2011). Effects of low pressure exhaust gas recirculation on regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine. Energy, 36(9), 5655-5665. doi:10.1016/j.energy.2011.06.061

Wang, S., Zhu, X., Somers, L. M. T., & de Goey, L. P. H. (2017). Effects of exhaust gas recirculation at various loads on diesel engine performance and exhaust particle size distribution using four blends with a research octane number of 70 and diesel. Energy Conversion and Management, 149, 918-927. doi:10.1016/j.enconman.2017.03.087

Li, X., Xu, Z., Guan, C., & Huang, Z. (2014). Impact of exhaust gas recirculation (EGR) on soot reactivity from a diesel engine operating at high load. Applied Thermal Engineering, 68(1-2), 100-106. doi:10.1016/j.applthermaleng.2014.04.029

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem