- -

Numerical analysis for design of bioinspired ceramic modular armors for ballistic protections

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical analysis for design of bioinspired ceramic modular armors for ballistic protections

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Albuixech, Vicente Francisco es_ES
dc.contributor.author Rodríguez-Millán, M. es_ES
dc.contributor.author Ito, T. es_ES
dc.contributor.author Loya, J. A. es_ES
dc.contributor.author Miguélez, M. H. es_ES
dc.date.accessioned 2020-12-22T04:32:26Z
dc.date.available 2020-12-22T04:32:26Z
dc.date.issued 2019-06 es_ES
dc.identifier.issn 1056-7895 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157580
dc.description.abstract [EN] The exigent requirements for personal protections in terms of energy absorption and ergonomics have led to increasing interest in bioinspired protections. This work focuses on the numerical analysis of ballistic behavior of different bioinspired geometries under impact loadings. Ceramic armors based on ganoid fish scales (the type exhibited by gars, bichirs and reedfishes), placoid fish scales (characterizing sharks and rays) and armadillo natural protection have been considered. Different impact conditions are studied, including perpendicular and oblique impacts to surface protection, different yaw angle, and multiple impacts. Main conclusion is related to the improved efficiency of modular armors against multiple shots exhibiting more localized damage and crack arrest properties. Moreover, its potential ergonomic is a promising characteristic justifying a deeper study. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work has been carried out within the framework of the research program Juan de la Cierva Incorporacion 2015, and research projects DPI2017-88166-R, and RTC-2015-3887-8 of FEDER program financed by the Ministerio de Economia, Industria y Competitividad of Spain. The support of the Generalitat Valenciana, Programme PROMETEO 2016/007 is also acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Damage Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Numerical analysis es_ES
dc.subject Bioinspired amors es_ES
dc.subject Impact loadings es_ES
dc.subject Damage es_ES
dc.subject Ceramic protections es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Numerical analysis for design of bioinspired ceramic modular armors for ballistic protections es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1056789518795203 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2015-3887-8A28030062MADRID/ES/DISEÑO AVANZADO Y FABRICACIÓN DE PROTECCIONES PERSONALES INTEGRALES DE USO MILITAR Y PARA FUERZAS Y CUERPOS DE SEGURIDAD DEL ESTADO (PROTEC_DAF)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-88166-R/ES/DISEÑO AVANZADO DE PROTECCIONES PERSONALES Y SU INTERACCION CON EL CUERPO HUMANO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation González Albuixech, VF.; Rodríguez-Millán, M.; Ito, T.; Loya, JA.; Miguélez, MH. (2019). Numerical analysis for design of bioinspired ceramic modular armors for ballistic protections. International Journal of Damage Mechanics. 28(6):815-837. https://doi.org/10.1177/1056789518795203 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1056789518795203 es_ES
dc.description.upvformatpinicio 815 es_ES
dc.description.upvformatpfin 837 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\377213 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Chen, I. H., Kiang, J. H., Correa, V., Lopez, M. I., Chen, P.-Y., McKittrick, J., & Meyers, M. A. (2011). Armadillo armor: Mechanical testing and micro-structural evaluation. Journal of the Mechanical Behavior of Biomedical Materials, 4(5), 713-722. doi:10.1016/j.jmbbm.2010.12.013 es_ES
dc.description.references Chintapalli, R. K., Mirkhalaf, M., Dastjerdi, A. K., & Barthelat, F. (2014). Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms. Bioinspiration & Biomimetics, 9(3), 036005. doi:10.1088/1748-3182/9/3/036005 es_ES
dc.description.references Deka, L. J., Bartus, S. D., & Vaidya, U. K. (2009). Multi-site impact response of S2-glass/epoxy composite laminates. Composites Science and Technology, 69(6), 725-735. doi:10.1016/j.compscitech.2008.03.002 es_ES
dc.description.references Duro-Royo, J., Zolotovsky, K., Mogas-Soldevila, L., Varshney, S., Oxman, N., Boyce, M. C., & Ortiz, C. (2015). MetaMesh: A hierarchical computational model for design and fabrication of biomimetic armored surfaces. Computer-Aided Design, 60, 14-27. doi:10.1016/j.cad.2014.05.005 es_ES
dc.description.references Flores-Johnson, E. A., Shen, L., Guiamatsia, I., & Nguyen, G. D. (2014). Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates. Composites Science and Technology, 96, 13-22. doi:10.1016/j.compscitech.2014.03.001 es_ES
dc.description.references Grujicic, M., Pandurangan, B., & Coutris, N. (2011). A Computational Investigation of the Multi-Hit Ballistic-Protection Performance of Laminated Transparent-armor Systems. Journal of Materials Engineering and Performance, 21(6), 837-848. doi:10.1007/s11665-011-0004-3 es_ES
dc.description.references Grunenfelder, L. K., Suksangpanya, N., Salinas, C., Milliron, G., Yaraghi, N., Herrera, S., … Kisailus, D. (2014). Bio-inspired impact-resistant composites. Acta Biomaterialia, 10(9), 3997-4008. doi:10.1016/j.actbio.2014.03.022 es_ES
dc.description.references Klasztorny, M., & Świerczewski, M. (2015). NUMERICAL MODELLING AND VALIDATION OF 12.7 MM FSP IMPACT INTO ALFC SHIELD – ARMOX 500T STEEL PLATE SYSTEM. Journal of KONES. Powertrain and Transport, 19(4), 291-299. doi:10.5604/12314005.1138463 es_ES
dc.description.references Liu, P., Zhu, D., Yao, Y., Wang, J., & Bui, T. Q. (2016). Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system. Materials & Design, 99, 201-210. doi:10.1016/j.matdes.2016.03.040 es_ES
dc.description.references Morka, A., & Nowak, J. (2015). NUMERICAL ANALYSES OF CERAMIC/METAL BALLISTIC PANELS SUBJECTED TO PROJECTILE IMPACT. Journal of KONES. Powertrain and Transport, 19(4), 465-472. doi:10.5604/12314005.1138618 es_ES
dc.description.references Pandya, K., Kumar, C. V. S., Nair, N., Patil, P., & Naik, N. (2014). Analytical and experimental studies on ballistic impact behavior of 2D woven fabric composites. International Journal of Damage Mechanics, 24(4), 471-511. doi:10.1177/1056789514531440 es_ES
dc.description.references Poniżnik, Z., Nowak, Z., & Basista, M. (2015). Numerical modeling of deformation and fracture of reinforcing fibers in ceramic–metal composites. International Journal of Damage Mechanics, 26(5), 711-734. doi:10.1177/1056789515611945 es_ES
dc.description.references Porter, M. M., Ravikumar, N., Barthelat, F., & Martini, R. (2017). 3D-printing and mechanics of bio-inspired articulated and multi-material structures. Journal of the Mechanical Behavior of Biomedical Materials, 73, 114-126. doi:10.1016/j.jmbbm.2016.12.016 es_ES
dc.description.references Reaugh, J. E., Holt, A. C., Welkins, M. L., Cunningham, B. J., Hord, B. L., & Kusubov, A. S. (1999). Impact studies of five ceramic materials and pyrex. International Journal of Impact Engineering, 23(1), 771-782. doi:10.1016/s0734-743x(99)00121-9 es_ES
dc.description.references Rostamiyan, Y., & Ferasat, A. (2016). High-speed impact and mechanical strength of ZrO2/polycarbonate nanocomposite. International Journal of Damage Mechanics, 26(7), 989-1002. doi:10.1177/1056789516644312 es_ES
dc.description.references Russell, B. P. (2014). Multi-hit ballistic damage characterisation of 304 stainless steel plates with finite elements. Materials & Design, 58, 252-264. doi:10.1016/j.matdes.2014.01.074 es_ES
dc.description.references Serjouei, A., Chi, R., Sridhar, I., & Tan, G. E. B. (2015). Empirical Ballistic Limit Velocity Model for Bi-Layer Ceramic–Metal Armor. International Journal of Protective Structures, 6(3), 509-527. doi:10.1260/2041-4196.6.3.509 es_ES
dc.description.references Shaktivesh, Nair, N., & Naik, N. (2014). Ballistic impact behavior of 2D plain weave fabric targets with multiple layers: Analytical formulation. International Journal of Damage Mechanics, 24(1), 116-150. doi:10.1177/1056789514524074 es_ES
dc.description.references Yang, W., Chen, I. H., Gludovatz, B., Zimmermann, E. A., Ritchie, R. O., & Meyers, M. A. (2012). Natural Flexible Dermal Armor. Advanced Materials, 25(1), 31-48. doi:10.1002/adma.201202713 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem