- -

Analysis of the stress intensity factor dependence with the crack velocity using a lattice model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of the stress intensity factor dependence with the crack velocity using a lattice model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Braun, Matías es_ES
dc.contributor.author González Albuixech, Vicente Francisco es_ES
dc.date.accessioned 2021-01-05T04:31:16Z
dc.date.available 2021-01-05T04:31:16Z
dc.date.issued 2019-05 es_ES
dc.identifier.issn 8756-758X es_ES
dc.identifier.uri http://hdl.handle.net/10251/158238
dc.description.abstract [EN] In this work, the influence of crack propagation velocity in the stress intensity factor has been studied. The analysis is performed with a lattice method and a linear elastic constitutive model. Numerous researchers determined the relationship between the dynamic stress intensity factor and crack propagation velocity with experimental and analytical results. They showed that toughness increases asymptotically when the crack tip velocity is near to a critical. However, these methods are very complex and computationally expensive; furthermore, the model requires the use of several parameters that are not easily obtained. Moreover, its practical implementation is not always feasible. Hence, it is usually omitted. This paper aims to capture the physics of this complex problem with a simple fracture criterion. The selected criterion is based on the maximum principal strain implemented in a lattice model. The method used to calculate the stress intensity factor is validated with other numerical methods. The selected example is a finite 2D notched under mode I fracture and different loads rates. Results show that the proposed model captures the asymptotic behaviour of the SIF in function of crack speed, as reported in the aforementioned models. es_ES
dc.description.sponsorship This work has been carried out within the framework of the research programme Juan de la Cierva Incorporacion 2015 and research projects DPI2013-46641-R, financed by the Ministerio de Economia, Industria y Competitividad. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Fatigue & Fracture of Engineering Materials & Structures es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Crack propagation es_ES
dc.subject Dynamic fracture es_ES
dc.subject Lattice model es_ES
dc.subject Stress intensity factor es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Analysis of the stress intensity factor dependence with the crack velocity using a lattice model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/ffe.12971 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-46641-R/ES/DESARROLLO DE MODELOS MICROESTRUCTURALES DE TEJIDO OSEO Y APLICACION A PROCEDIMIENTOS DE EVALUACION DEL RIESGO DE FRACTURA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Braun, M.; González Albuixech, VF. (2019). Analysis of the stress intensity factor dependence with the crack velocity using a lattice model. Fatigue & Fracture of Engineering Materials & Structures. 42(5):1075-1084. https://doi.org/10.1111/ffe.12971 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/ffe.12971 es_ES
dc.description.upvformatpinicio 1075 es_ES
dc.description.upvformatpfin 1084 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\377216 es_ES
dc.description.references KobayashiT DallyJ.Relation between crack velocity and the stress intensity factor in birefringent polymers. ASTM Int;1977. es_ES
dc.description.references Dally, J. W. (1979). Dynamic photoelastic studies of fracture. Experimental Mechanics, 19(10), 349-361. doi:10.1007/bf02324250 es_ES
dc.description.references Freund, L. B., & Douglas, A. S. (1982). The influence of inertia on elastic-plastic antiplane-shear crack growth. Journal of the Mechanics and Physics of Solids, 30(1-2), 59-74. doi:10.1016/0022-5096(82)90013-8 es_ES
dc.description.references LAM, P., & FREUND, L. (1985). Analysis of dynamic growth of a tensile crack in an elastic-plastic material. Journal of the Mechanics and Physics of Solids, 33(2), 153-167. doi:10.1016/0022-5096(85)90028-6 es_ES
dc.description.references Costanzo, F., & Walton, J. R. (1998). International Journal of Fracture, 91(4), 373-389. doi:10.1023/a:1007494031596 es_ES
dc.description.references Bui, T. Q. (2015). Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS. Computer Methods in Applied Mechanics and Engineering, 295, 470-509. doi:10.1016/j.cma.2015.07.005 es_ES
dc.description.references Bui, T. Q., Hirose, S., Zhang, C., Rabczuk, T., Wu, C.-T., Saitoh, T., & Lei, J. (2016). Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites. Mechanics of Materials, 97, 135-163. doi:10.1016/j.mechmat.2016.03.001 es_ES
dc.description.references Doan, D. H., Bui, T. Q., Van Do, T., & Duc, N. D. (2017). A rate-dependent hybrid phase field model for dynamic crack propagation. Journal of Applied Physics, 122(11), 115102. doi:10.1063/1.4990073 es_ES
dc.description.references Dominguez, J., & Gallego, R. (1992). Time domain boundary element method for dynamic stress intensity factor computations. International Journal for Numerical Methods in Engineering, 33(3), 635-647. doi:10.1002/nme.1620330309 es_ES
dc.description.references Szelestey, P., Heino, P., Kertész, J., & Kaski, K. (2000). Effect of anisotropy on the instability of crack propagation. Physical Review E, 61(4), 3378-3383. doi:10.1103/physreve.61.3378 es_ES
dc.description.references Moran, B., & Shih, C. F. (1987). Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics, 27(6), 615-642. doi:10.1016/0013-7944(87)90155-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem