- -

PLS multivariate analysis applied to corrosion studies on reinforced concrete

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PLS multivariate analysis applied to corrosion studies on reinforced concrete

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monzón, Pablo es_ES
dc.contributor.author Ramón Zamora, José Enrique es_ES
dc.contributor.author Gandía-Romero, Jose M. es_ES
dc.contributor.author Valcuende Payá, Manuel Octavio es_ES
dc.contributor.author Soto Camino, Juan es_ES
dc.contributor.author Palací-López, Daniel es_ES
dc.date.accessioned 2021-01-09T04:32:07Z
dc.date.available 2021-01-09T04:32:07Z
dc.date.issued 2019-02 es_ES
dc.identifier.issn 0886-9383 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158504
dc.description.abstract [EN] There are few techniques available to calculate the corrosion rate (i(corr)) of reinforcing steel in concrete structures. This is due not only to a lack of instrumentation but also because it is necessary to take into account that polarization can irreversibly modify the metal surface and can affect the results or the future state of the metal. This is the reason some researchers prefer to test reinforcing steel with reversible techniques. The main objective of this study is to predict the corrosion rate of reinforced concrete using electrochemical methods combined with statistical tools such as multivariate analysis. Using reinforcements embedded in mortar samples, the corrosion rates were determined at different ages using the Tafel method, and values obtained were compared with other techniques: linear polarization resistance (LPR), potentiostatic pulse testing (PPT), and AC electrochemical impedance spectroscopy (EIS). In addition, these values were compared to those obtained using a mixed technique based on partial least squares (PLS). With this technique, we were able to automatically analyze the current data obtained from LPR, PPT, and EIS and to predict the i(corr) value. The study allows us to conclude that it is possible to obtain reliable i(corr) values, very close to those obtained with the Tafel method by using PLS combined with PPT or LPR. Furthermore, it presents several advantages, such as being able to directly treat data without requiring an established Stern-Geary constant (B) for LPR and not having to use an equivalent circuit (EC) in EIS to calculate i(corr) because only the impedance spectra are necessary. es_ES
dc.description.sponsorship Spanish Ministry of Economy and Competitiveness, Grant/Award Number: BIA2016-78460-C3-3-R; Spanish Ministry of Science and Innovation, Grant/Award Number: FPU 13/00911 and FPU16/00723 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Chemometrics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrochemical impedance spectroscopy (EIS) es_ES
dc.subject Linear polarization resistance (LPR) es_ES
dc.subject Partial least squares (PLS) es_ES
dc.subject Potentiostatic pulse technique (PPT) es_ES
dc.subject Reinforcing steel es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title PLS multivariate analysis applied to corrosion studies on reinforced concrete es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cem.3096 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F00911/ES/FPU13%2F00911/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2016-78460-C3-3-R/ES/DURABILIDAD Y VIDA UTIL DEL HORMIGON DE MUY ALTO RENDIMIENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F00723/ES/FPU16%2F00723/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Monzón, P.; Ramón Zamora, JE.; Gandía-Romero, JM.; Valcuende Payá, MO.; Soto Camino, J.; Palací-López, D. (2019). PLS multivariate analysis applied to corrosion studies on reinforced concrete. Journal of Chemometrics. 33(2):1-12. https://doi.org/10.1002/cem.3096 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cem.3096 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\389002 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Chang, Z.-T., Cherry, B., & Marosszeky, M. (2008). Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: Experimental measurement of polarisation curves of steel in concrete. Corrosion Science, 50(2), 357-364. doi:10.1016/j.corsci.2007.08.009 es_ES
dc.description.references Law, D. W., Millard, S. G., & Bungey, J. H. (2000). Linear polarisation resistance measurements using a potentiostatically controlled guard ring. NDT & E International, 33(1), 15-21. doi:10.1016/s0963-8695(99)00015-8 es_ES
dc.description.references Andrade, C., & Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5), 315-328. doi:10.1016/0950-0618(95)00044-5 es_ES
dc.description.references Glass, G. K., Page, C. L., Short, N. R., & Zhang, J.-Z. (1997). The analysis of potentiostatic transients applied to the corrosion of steel in concrete. Corrosion Science, 39(9), 1657-1663. doi:10.1016/s0010-938x(97)00071-1 es_ES
dc.description.references Poursaee, A. (2010). Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern–Geary constant of reinforcing steel in concrete. Cement and Concrete Research, 40(9), 1451-1458. doi:10.1016/j.cemconres.2010.04.006 es_ES
dc.description.references Bastidas, D. M., González, J. A., Feliu, S., Cobo, A., & Miranda, J. M. (2007). A Quantitative Study of Concrete-Embedded Steel Corrosion Using Potentiostatic Pulses. CORROSION, 63(12), 1094-1100. doi:10.5006/1.3278327 es_ES
dc.description.references Saricimen, H., Mohammad, M., Quddus, A., Shameem, M., & Barry, M. . (2002). Effectiveness of concrete inhibitors in retarding rebar corrosion. Cement and Concrete Composites, 24(1), 89-100. doi:10.1016/s0958-9465(01)00030-0 es_ES
dc.description.references Lee JLS Gilmore IS Seah MP Extract of multivariate analysis terminology from ISO 18115-1 Surface Chemical Analysis - Vocabulary - Part 1: general terms and terms for the spectroscopies National Physical Laboratory. Teddington. Middlesex UK 2010 es_ES
dc.description.references UNE 112072: Determinación de la velocidad de corrosión de armaduras en laboratorio mediante medidas de la resistencia de polarización 2001 es_ES
dc.description.references ASTM G 102-89: Standard pratice for calculation of corrosion rates and related information from electrochemical measurements 2010 es_ES
dc.description.references Trabanelli, G., Monticelli, C., Grassi, V., & Frignani, A. (2005). Electrochemical study on inhibitors of rebar corrosion in carbonated concrete. Cement and Concrete Research, 35(9), 1804-1813. doi:10.1016/j.cemconres.2004.12.010 es_ES
dc.description.references Koleva, D. A., de Wit, J. H. W., van Breugel, K., Lodhi, Z. F., & van Westing, E. (2007). Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. Journal of The Electrochemical Society, 154(4), P52. doi:10.1149/1.2436609 es_ES
dc.description.references Stern, M., & Geaby, A. L. (1957). Electrochemical Polarization. Journal of The Electrochemical Society, 104(1), 56. doi:10.1149/1.2428496 es_ES
dc.description.references McCafferty, E. (2005). Validation of corrosion rates measured by the Tafel extrapolation method. Corrosion Science, 47(12), 3202-3215. doi:10.1016/j.corsci.2005.05.046 es_ES
dc.description.references Poorqasemi, E., Abootalebi, O., Peikari, M., & Haqdar, F. (2009). Investigating accuracy of the Tafel extrapolation method in HCl solutions. Corrosion Science, 51(5), 1043-1054. doi:10.1016/j.corsci.2009.03.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem