- -

Peptide-Capped Mesoporous Nanoparticles: Toward a more Efficient Internalization of Alendronate

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Peptide-Capped Mesoporous Nanoparticles: Toward a more Efficient Internalization of Alendronate

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Añón, Elena es_ES
dc.contributor.author Costero, Ana M. es_ES
dc.contributor.author Amorós del Toro, Pedro es_ES
dc.contributor.author El Haskouri, Jamal es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Parra Álvarez, Margarita es_ES
dc.contributor.author Gil Grau, Salvador es_ES
dc.contributor.author Gaviña, Pablo es_ES
dc.contributor.author Terencio Silvestre, María Carmen es_ES
dc.contributor.author Alfonso-Navarro, María es_ES
dc.date.accessioned 2021-01-14T04:32:55Z
dc.date.available 2021-01-14T04:32:55Z
dc.date.issued 2020-03-31 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158947
dc.description This is the peer reviewed version of the following article: E. Añón, A. M. Costero, P. Amorós, J. El Haskouri, R. Martínez-Mánez, M. Parra, S. Gil, P. Gaviña, M. C. Terencio, M. Alfonso, ChemistrySelect 2020, 5, 3618., which has been published in final form at https://doi.org/10.1002/slct.202000417. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
dc.description.abstract [EN] Osteoporosis is an illness which appears when the osteoblast/osteoclast activities are unbalanced taking place bone resorption (caused by osteoclasts) in higher extension than bone formation (induced by osteoblasts). Alendronate is one of the most used drugs for osteoporosis treatment despite its scarce bioavailability. Here we present the synthesis and characterization of mesoporous gated nanoparticles (two sets) for the controlled release of alendronate. The first set of nanoparticles (S1) were loaded with sulforhodamine B and capped with a peptide that could be selectively hydrolyzed by cathepsin K enzyme (overexpressed in osteoclasts). The second set (S2) was functionalized with aminopropyl moieties, loaded with nitrobenzofurazan labelled alendronate and capped with the same peptide. Both nanoparticles were internalized by RAW 264.7 macrophages (which could differentiate in osteoclasts) and were able to release its entrapped cargo in the presence of cathepsin K added in the macrophage lysates. Using S2 nanoparticles 4.2% of the total alendronate amount in contact with the cells is liberated inside them and could produce its therapeutic effect. es_ES
dc.description.sponsorship We thank the Spanish Government (RTI2018-100910-B-C41, RTI2018-100910-B-C42 (MCUI/AEI/FEDER, UE)) and the Generalitat Valenciana (PROMETEU/2018/024) for support. SCSIE (Universitat de Valencia) is gratefully acknowledged for all the equipment employed. NMR was registered at the U26 facility of ICTS "NANBIOSIS" at the Universitat of Valencia. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemistrySelect es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alendronate es_ES
dc.subject Enzymes es_ES
dc.subject Cathepsin K es_ES
dc.subject Nanoparticles es_ES
dc.subject Osteoporosis es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Peptide-Capped Mesoporous Nanoparticles: Toward a more Efficient Internalization of Alendronate es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/slct.202000417 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C42/ES/MATERIALES INTELIGENTES PARA LA DETECCION DE DROGAS DE ABUSO Y BIOMARCADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Añón, E.; Costero, AM.; Amorós Del Toro, P.; El Haskouri, J.; Martínez-Máñez, R.; Parra Álvarez, M.; Gil Grau, S.... (2020). Peptide-Capped Mesoporous Nanoparticles: Toward a more Efficient Internalization of Alendronate. ChemistrySelect. 5(12):3618-3625. https://doi.org/10.1002/slct.202000417 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/slct.202000417 es_ES
dc.description.upvformatpinicio 3618 es_ES
dc.description.upvformatpfin 3625 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2365-6549 es_ES
dc.relation.pasarela S\418264 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Qaseem, A., Forciea, M. A., McLean, R. M., & Denberg, T. D. (2017). Treatment of Low Bone Density or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update From the American College of Physicians. Annals of Internal Medicine, 166(11), 818. doi:10.7326/m15-1361 es_ES
dc.description.references Cramer, J. A., Gold, D. T., Silverman, S. L., & Lewiecki, E. M. (2007). A systematic review of persistence and compliance with bisphosphonates for osteoporosis. Osteoporosis International, 18(8), 1023-1031. doi:10.1007/s00198-006-0322-8 es_ES
dc.description.references Watts, N. B., & Diab, D. L. (2010). Long-Term Use of Bisphosphonates in Osteoporosis. The Journal of Clinical Endocrinology & Metabolism, 95(4), 1555-1565. doi:10.1210/jc.2009-1947 es_ES
dc.description.references Kavanagh, K. L., Guo, K., Dunford, J. E., Wu, X., Knapp, S., Ebetino, F. H., … Oppermann, U. (2006). The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proceedings of the National Academy of Sciences, 103(20), 7829-7834. doi:10.1073/pnas.0601643103 es_ES
dc.description.references Ochiuz, L., Grigoras, C., Popa, M., Stoleriu, I., Munteanu, C., Timofte, D., … Grigoras, A. (2016). Alendronate-Loaded Modified Drug Delivery Lipid Particles Intended for Improved Oral and Topical Administration. Molecules, 21(7), 858. doi:10.3390/molecules21070858 es_ES
dc.description.references Junyaprasert, V. B., & Morakul, B. (2015). Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences, 10(1), 13-23. doi:10.1016/j.ajps.2014.08.005 es_ES
dc.description.references Elgadir, M. A., Uddin, M. S., Ferdosh, S., Adam, A., Chowdhury, A. J. K., & Sarker, M. Z. I. (2015). Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. Journal of Food and Drug Analysis, 23(4), 619-629. doi:10.1016/j.jfda.2014.10.008 es_ES
dc.description.references Farjadian, F., Ghasemi, A., Gohari, O., Roointan, A., Karimi, M., & Hamblin, M. R. (2019). Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine, 14(1), 93-126. doi:10.2217/nnm-2018-0120 es_ES
dc.description.references Farjadian, F., Roointan, A., Mohammadi-Samani, S., & Hosseini, M. (2019). Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chemical Engineering Journal, 359, 684-705. doi:10.1016/j.cej.2018.11.156 es_ES
dc.description.references Zhang, Y., Wang, J., Bai, X., Jiang, T., Zhang, Q., & Wang, S. (2012). Mesoporous Silica Nanoparticles for Increasing the Oral Bioavailability and Permeation of Poorly Water Soluble Drugs. Molecular Pharmaceutics, 9(3), 505-513. doi:10.1021/mp200287c es_ES
dc.description.references Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b es_ES
dc.description.references De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161 es_ES
dc.description.references Juárez, L. A., Añón, E., Giménez, C., Sancenón, F., Martínez-Máñez, R., Costero, A. M., … Bernardos, A. (2016). Self-Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports. Chemistry - A European Journal, 22(40), 14126-14130. doi:10.1002/chem.201602126 es_ES
dc.description.references Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086 es_ES
dc.description.references Sun, Y.-L., Zhou, Y., Li, Q.-L., & Yang, Y.-W. (2013). Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release. Chemical Communications, 49(79), 9033. doi:10.1039/c3cc45216f es_ES
dc.description.references Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414e es_ES
dc.description.references Slowing, I., Trewyn, B. G., & Lin, V. S.-Y. (2006). Effect of Surface Functionalization of MCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells. Journal of the American Chemical Society, 128(46), 14792-14793. doi:10.1021/ja0645943 es_ES
dc.description.references Oroval, M., Díez, P., Aznar, E., Coll, C., Marcos, M. D., Sancenón, F., … Martínez-Máñez, R. (2016). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 23(6), 1353-1360. doi:10.1002/chem.201604104 es_ES
dc.description.references Teruel, A., Coll, C., Costero, A., Ferri, D., Parra, M., Gaviña, P., … Sancenón, F. (2018). Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 23(2), 375. doi:10.3390/molecules23020375 es_ES
dc.description.references Drake, F. H., Dodds, R. A., James, I. E., Connor, J. R., Debouck, C., Richardson, S., … Gowen, M. (1996). Cathepsin K, but Not Cathepsins B, L, or S, Is Abundantly Expressed in Human Osteoclasts. Journal of Biological Chemistry, 271(21), 12511-12516. doi:10.1074/jbc.271.21.12511 es_ES
dc.description.references ALVES, M. F. M., PUZER, L., COTRIN, S. S., JULIANO, M. A., JULIANO, L., BRÖMME, D., & CARMONA, A. K. (2003). S3 to S3’ subsite specificity of recombinant human cathepsin K and development of selective internally quenched fluorescent substrates. Biochemical Journal, 373(3), 981-986. doi:10.1042/bj20030438 es_ES
dc.description.references Walash, M. I., Metwally, M. E.-S., Eid, M., & El-Shaheny, R. N. (2012). Validated spectrophotometric methods for determination of Alendronate sodium in tablets through nucleophilic aromatic substitution reactions. Chemistry Central Journal, 6(1). doi:10.1186/1752-153x-6-25 es_ES
dc.description.references CUETARA, B. L. V., CROTTI, T. N., O’DONOGHUE, A. J., & MCHUGH, K. P. (2006). CLONING AND CHARACTERIZATION OF OSTEOCLAST PRECURSORS FROM THE RAW264.7 CELL LINE. In Vitro Cellular & Developmental Biology - Animal, 42(7), 182. doi:10.1290/0510075.1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem