- -

Stabilization of soil by means alternative alkali-activated cement prepared with spent FCC catalyst

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stabilization of soil by means alternative alkali-activated cement prepared with spent FCC catalyst

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cosa-Martínez, Juan es_ES
dc.contributor.author Soriano Martinez, Lourdes es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.date.accessioned 2021-01-16T04:31:30Z
dc.date.available 2021-01-16T04:31:30Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 1546-542X es_ES
dc.identifier.uri http://hdl.handle.net/10251/159194
dc.description.abstract [EN] Alkali-activated cements are widely studied as alternative and sustainable binder in soil stabilization. In this research work, a mold was designed and constructed, which allowed small cubic specimens to be made (40 x 40 x 40 mm(3)). With the newly designed mold, cubic samples of soil stabilized with portland cement (OPC) and alternative AAC (based on spent fluid catalytic cracking catalyst FCC) were prepared from which compressive strength was obtained. Cylindrical specimens were also prepared using the same binders as in the previous case to obtain their compressive strength. The results obtained in both cases were compared. Greater resistances for cubic samples were achieved. The cubic specimens were selected for being better in terms of standard deviation of compressive strength for AAC stabilized soil. The obtained compressive strength and standard deviation results were compared between the soil specimens stabilized with different stabilizers cured at 7, 14, 28, and 90 days. The method allows small-sized cubic specimens to be prepared. It improves ergonomics. It also facilitates a large number of specimens being obtained with a small amount of sample. Soil stabilized with AAC yielded higher compressive strength after 90 days compared to that with OPC. es_ES
dc.description.sponsorship Spanish Ministry of Economy and Competitiveness, Grant/Award Number: BIA2015 70107-R. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof International Journal of Applied Ceramic Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alkali-activated cement es_ES
dc.subject Soil stabilization es_ES
dc.subject Sustainable construction materials es_ES
dc.subject Waste reuse es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Stabilization of soil by means alternative alkali-activated cement prepared with spent FCC catalyst es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/ijac.13377 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Cosa-Martínez, J.; Soriano Martinez, L.; Borrachero Rosado, MV.; Paya Bernabeu, JJ.; Monzó Balbuena, JM. (2020). Stabilization of soil by means alternative alkali-activated cement prepared with spent FCC catalyst. International Journal of Applied Ceramic Technology. 17(1):190-196. https://doi.org/10.1111/ijac.13377 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/ijac.13377 es_ES
dc.description.upvformatpinicio 190 es_ES
dc.description.upvformatpfin 196 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\407163 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references UNE‐EN 12390‐1.Testing hardened concrete ‐ Part 1: Shape dimensions and other requirements for specimens and moulds.2013. es_ES
dc.description.references UNE‐EN 41410.Compressed earth blocs for walls and partitions. Definitions specifications and test Methods.2008. es_ES
dc.description.references ASTM D‐18C. ed. STP479‐EB Special Procedures for Testing Soil and Rock for Engineering Purposes: 5th ed. West Conshohocken PA: ASTM International.1970.https://doi.org/10.1520/STP479-EB es_ES
dc.description.references UNE‐EN 196–1.Methods of testing cement ‐ Part 1: Determination of strength.2005. es_ES
dc.description.references Auroville Earth Institute Earthen architecture for sustainable habitat and compressed stabilized earth block technology [cited 2019 Sep 2]. Available fromhttp://www.ada.gov.sa/idc/groups/public/documents/AR_ADA_Researches/004568.pdf es_ES
dc.description.references NLT‐310 90.Vibrating hammer compaction of treated granular. materials.1990. es_ES
dc.description.references UNE‐EN 13286‐2.Unbound and hydraulically bound mixtures ‐ Part 2: Test methods for laboratory reference density and water content ‐. Proctor compaction.2011. es_ES
dc.description.references Khadka, B., & Shakya, M. (2015). Comparative compressive strength of stabilized and un-stabilized rammed earth. Materials and Structures, 49(9), 3945-3955. doi:10.1617/s11527-015-0765-5 es_ES
dc.description.references Alrubaye, A. J., Hasan, M., & Fattah, M. Y. (2016). Stabilization of soft kaolin clay with silica fume and lime. International Journal of Geotechnical Engineering, 11(1), 90-96. doi:10.1080/19386362.2016.1187884 es_ES
dc.description.references Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468-1478. doi:10.1016/j.conbuildmat.2013.06.017 es_ES
dc.description.references Zhang, M., Zhao, M., Zhang, G., Nowak, P., Coen, A., & Tao, M. (2015). Calcium-free geopolymer as a stabilizer for sulfate-rich soils. Applied Clay Science, 108, 199-207. doi:10.1016/j.clay.2015.02.029 es_ES
dc.description.references Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72-74. doi:10.1016/j.matlet.2013.10.001 es_ES
dc.description.references Mejía, J. M., Mejía de Gutiérrez, R., & Montes, C. (2016). Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. Journal of Cleaner Production, 118, 133-139. doi:10.1016/j.jclepro.2016.01.057 es_ES
dc.description.references Puertas, F., & Torres-Carrasco, M. (2014). Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cement and Concrete Research, 57, 95-104. doi:10.1016/j.cemconres.2013.12.005 es_ES
dc.description.references CosaJ SorianoL BorracheroMV PayáJ MonzóJ.Use ofAlkaline Activated Cements from Residues for Soil Stabilization. NOCMAT 2017. Proceeding Paper Published. In: Ghavami K Herrera PJ eds. Materials Research Proceedings. 2018. 7:257–64.http://dx.doi.org/10.21741/9781945291838-23 es_ES
dc.description.references Tashima, M. M., Akasaki, J. L., Castaldelli, V. N., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2012). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 80, 50-52. doi:10.1016/j.matlet.2012.04.051 es_ES
dc.description.references Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b es_ES
dc.description.references UNE‐EN 103 501.Geotechnics. Compactation test. Modified proctor.1994. es_ES
dc.description.references ASTMD1557–12e1 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56 000 ft‐lbf/ft3 (2 700 kN‐m/m3)).West Conshohocken PA:ASTM. International.2012.https://doi.org/10.1520/D1557-12E01 es_ES
dc.description.references UNE‐EN 772–1.Methods of test for masonry units.2011. es_ES
dc.description.references UNE‐EN 197–1.Cement ‐ Part 1: composition specifications and conformity criteria for common cements.2011. es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem