- -

Scalable analysis for arbitrary photonic integrated waveguide meshes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Scalable analysis for arbitrary photonic integrated waveguide meshes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-López, Daniel es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.date.accessioned 2021-01-21T04:31:33Z
dc.date.available 2021-01-21T04:31:33Z
dc.date.issued 2019-01-20 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159595
dc.description.abstract [EN] The advances in fabrication processes in different material platforms employed in integrated optics are opening the path towards the implementation of circuits with increasing degrees of complexity. In addition to the more conventional application specific photonic circuit paradigm, the programmable multifunctional photonics (PMP) approach is a transversal concept inspired by similar approaches, which are already employed in other technology fields. For instance, in electronics, field programmable gate array devices enable a much more flexible universal operation as compared to application specific integrated circuits. In photonics, the PMP concept is enabled by two-dimensional (2D) waveguide meshes for which the number of possible input/outputs ports quickly builds up, and, furthermore, internal signal flow paths make the computation of transfer functions an intractable problem. Here we report a scalable method based on mathematical induction that allows one to obtain the scattering matrix of any 2D integrated photonic waveguide mesh circuit composed of an arbitrary number of cells and that is easily programmable. To our knowledge this is the first report of the kind, and our results open the path to unblocking this important design bottleneck. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement es_ES
dc.description.sponsorship H2020 European Research Council (ERC) (ADG741415 UMWPCHIP); Generalitat Valenciana (PROMETEO 2017/103); European Cooperation in Science and Technology (COST) (CA16220 EUIMWP) es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Optica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Programmable photonics es_ES
dc.subject Integrated optics es_ES
dc.subject Circuit modelling es_ES
dc.subject Circuit analysis es_ES
dc.subject Signal processing es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Scalable analysis for arbitrary photonic integrated waveguide meshes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OPTICA.6.000019 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA16220/EU/European Network for High Performance Integrated Microwave Photonics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Pérez-López, D.; Capmany Francoy, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica. 6(1):19-27. https://doi.org/10.1364/OPTICA.6.000019 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/OPTICA.6.000019 es_ES
dc.description.upvformatpinicio 19 es_ES
dc.description.upvformatpfin 27 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2334-2536 es_ES
dc.relation.pasarela S\376896 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093 es_ES
dc.description.references Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854 es_ES
dc.description.references Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1 es_ES
dc.description.references Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254 es_ES
dc.description.references Perez, D., Gasulla, I., Fraile, F. J., Crudgington, L., Thomson, D. J., Khokhar, A. Z., … Capmany, J. (2017). Silicon Photonics Rectangular Universal Interferometer. Laser & Photonics Reviews, 11(6), 1700219. doi:10.1002/lpor.201700219 es_ES
dc.description.references Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001 es_ES
dc.description.references Miller, D. A. B. (2013). Self-aligning universal beam coupler. Optics Express, 21(5), 6360. doi:10.1364/oe.21.006360 es_ES
dc.description.references Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265 es_ES
dc.description.references Reck, M., Zeilinger, A., Bernstein, H. J., & Bertani, P. (1994). Experimental realization of any discrete unitary operator. Physical Review Letters, 73(1), 58-61. doi:10.1103/physrevlett.73.58 es_ES
dc.description.references Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460 es_ES
dc.description.references Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409(6816), 46-52. doi:10.1038/35051009 es_ES
dc.description.references Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P., & Milburn, G. J. (2007). Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79(1), 135-174. doi:10.1103/revmodphys.79.135 es_ES
dc.description.references O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229 es_ES
dc.description.references Thompson, M. G., Politi, A., Matthews, J. C. F., & O’Brien, J. L. (2011). Integrated waveguide circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2), 94. doi:10.1049/iet-cds.2010.0108 es_ES
dc.description.references Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060 es_ES
dc.description.references Politi, A., Cryan, M. J., Rarity, J. G., Yu, S., & O’Brien, J. L. (2008). Silica-on-Silicon Waveguide Quantum Circuits. Science, 320(5876), 646-649. doi:10.1126/science.1155441 es_ES
dc.description.references Kieling, K., O’Brien, J. L., & Eisert, J. (2010). On photonic controlled phase gates. New Journal of Physics, 12(1), 013003. doi:10.1088/1367-2630/12/1/013003 es_ES
dc.description.references Spring, J. B., Metcalf, B. J., Humphreys, P. C., Kolthammer, W. S., Jin, X.-M., Barbieri, M., … Walmsley, I. A. (2012). Boson Sampling on a Photonic Chip. Science, 339(6121), 798-801. doi:10.1126/science.1231692 es_ES
dc.description.references Broome, M. A., Fedrizzi, A., Rahimi-Keshari, S., Dove, J., Aaronson, S., Ralph, T. C., & White, A. G. (2012). Photonic Boson Sampling in a Tunable Circuit. Science, 339(6121), 794-798. doi:10.1126/science.1231440 es_ES
dc.description.references Crespi, A., Osellame, R., Ramponi, R., Brod, D. J., Galvão, E. F., Spagnolo, N., … Sciarrino, F. (2013). Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photonics, 7(7), 545-549. doi:10.1038/nphoton.2013.112 es_ES
dc.description.references Lanyon, B. P., Whitfield, J. D., Gillett, G. G., Goggin, M. E., Almeida, M. P., Kassal, I., … White, A. G. (2010). Towards quantum chemistry on a quantum computer. Nature Chemistry, 2(2), 106-111. doi:10.1038/nchem.483 es_ES
dc.description.references Harris, N. C., Bunandar, D., Pant, M., Steinbrecher, G. R., Mower, J., Prabhu, M., … Englund, D. (2016). Large-scale quantum photonic circuits in silicon. Nanophotonics, 5(3), 456-468. doi:10.1515/nanoph-2015-0146 es_ES
dc.description.references Shen, Y., Hattink, M. H. N., Samadi, P., Cheng, Q., Hu, Z., Gazman, A., & Bergman, K. (2018). Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks. Optics Express, 26(8), 10914. doi:10.1364/oe.26.010914 es_ES
dc.description.references Sun, C., Wade, M. T., Lee, Y., Orcutt, J. S., Alloatti, L., Georgas, M. S., … Stojanović, V. M. (2015). Single-chip microprocessor that communicates directly using light. Nature, 528(7583), 534-538. doi:10.1038/nature16454 es_ES
dc.description.references Guillet de Chatellus, H., Cortés, L. R., & Azaña, J. (2015). Optical real-time Fourier transformation with kilohertz resolutions. Optica, 3(1), 1. doi:10.1364/optica.3.000001 es_ES
dc.description.references Zhuang, L., Khan, M. R., Beeker, W., Leinse, A., Heideman, R., & Roeloffzen, C. (2012). Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter. Optics Express, 20(24), 26499. doi:10.1364/oe.20.026499 es_ES
dc.description.references Ferrera, M., Park, Y., Razzari, L., Little, B. E., Chu, S. T., Morandotti, R., … Azaña, J. (2010). On-chip CMOS-compatible all-optical integrator. Nature Communications, 1(1). doi:10.1038/ncomms1028 es_ES
dc.description.references Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., … Soljačić, M. (2017). Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7), 441-446. doi:10.1038/nphoton.2017.93 es_ES
dc.description.references Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025 es_ES
dc.description.references Heideman, R., Hoekman, M., & Schreuder, E. (2012). TriPleX-Based Integrated Optical Ring Resonators for Lab-on-a-Chip and Environmental Detection. IEEE Journal of Selected Topics in Quantum Electronics, 18(5), 1583-1596. doi:10.1109/jstqe.2012.2188382 es_ES
dc.description.references Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O., & Carusotto, I. (2016). Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics. Physical Review A, 93(4). doi:10.1103/physreva.93.043827 es_ES
dc.description.references Harari, G., Bandres, M. A., Lumer, Y., Rechtsman, M. C., Chong, Y. D., Khajavikhan, M., … Segev, M. (2018). Topological insulator laser: Theory. Science, 359(6381). doi:10.1126/science.aar4003 es_ES
dc.description.references Bandres, M. A., Wittek, S., Harari, G., Parto, M., Ren, J., Segev, M., … Khajavikhan, M. (2018). Topological insulator laser: Experiments. Science, 359(6381). doi:10.1126/science.aar4005 es_ES
dc.description.references Jinguji, K., & Kawachi, M. (1995). Synthesis of coherent two-port lattice-form optical delay-line circuit. Journal of Lightwave Technology, 13(1), 73-82. doi:10.1109/50.350643 es_ES
dc.description.references Jinguji, K. (1996). Synthesis of coherent two-port optical delay-line circuit with ring waveguides. Journal of Lightwave Technology, 14(8), 1882-1898. doi:10.1109/50.532026 es_ES
dc.description.references Madsen, C. K. (2000). General IIR optical filter design for WDM applications using all-pass filters. Journal of Lightwave Technology, 18(6), 860-868. doi:10.1109/50.848399 es_ES
dc.description.references Miller, D. A. B. (2015). Perfect optics with imperfect components. Optica, 2(8), 747. doi:10.1364/optica.2.000747 es_ES
dc.description.references Burgwal, R., Clements, W. R., Smith, D. H., Gates, J. C., Kolthammer, W. S., Renema, J. J., & Walmsley, I. A. (2017). Using an imperfect photonic network to implement random unitaries. Optics Express, 25(23), 28236. doi:10.1364/oe.25.028236 es_ES
dc.description.references Flamini, F., Spagnolo, N., Viggianiello, N., Crespi, A., Osellame, R., & Sciarrino, F. (2017). Benchmarking integrated linear-optical architectures for quantum information processing. Scientific Reports, 7(1). doi:10.1038/s41598-017-15174-2 es_ES
dc.description.references Fandiño, J. S., Muñoz, P., Doménech, D., & Capmany, J. (2016). A monolithic integrated photonic microwave filter. Nature Photonics, 11(2), 124-129. doi:10.1038/nphoton.2016.233 es_ES
dc.description.references Grillanda, S., Carminati, M., Morichetti, F., Ciccarella, P., Annoni, A., Ferrari, G., … Melloni, A. (2014). Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica, 1(3), 129. doi:10.1364/optica.1.000129 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem