- -

Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness

Mostrar el registro completo del ítem

Lascano-Aimacaña, DS.; Quiles-Carrillo, L.; Torres-Giner, S.; Boronat, T.; Montanes, N. (2019). Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness. Polymers. 11(8):1-15. https://doi.org/10.3390/polym11081354

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160302

Ficheros en el ítem

Metadatos del ítem

Título: Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness
Autor: Lascano-Aimacaña, Diego Sebastián Quiles-Carrillo, Luis Torres-Giner, Sergio Boronat, Teodomiro Montanes, Nestor
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Fecha difusión:
Resumen:
[EN] This research deals with the influence of different curing and post-curing temperatures on the mechanical and thermomechanical properties as well as the gel time of an epoxy resin prepared by the reaction of diglycidyl ...[+]
Palabras clave: Bio-based thermosets , Post-curing , Gel time , Mechanical properties
Derechos de uso: Reconocimiento (by)
Fuente:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym11081354
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/polym11081354
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/
info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/
Agradecimientos:
This research was supported by the Spanish Ministry of Science, Innovation, and Universities (MICIU) through the MAT2017-84909-C2-2-R program number. D.L. acknowledges Universitat Politècnica de València (UPV) for the ...[+]
Tipo: Artículo

References

Jin, F.-L., Li, X., & Park, S.-J. (2015). Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29, 1-11. doi:10.1016/j.jiec.2015.03.026

Yu, S., Li, X., Guo, X., Li, Z., & Zou, M. (2019). Curing and Characteristics of N,N,N′,N′-Tetraepoxypropyl-4,4′-Diaminodiphenylmethane Epoxy Resin-Based Buoyancy Material. Polymers, 11(7), 1137. doi:10.3390/polym11071137

Njuguna, J., Pielichowski, K., & Alcock, J. R. (2007). Epoxy-Based Fibre Reinforced Nanocomposites. Advanced Engineering Materials, 9(10), 835-847. doi:10.1002/adem.200700118 [+]
Jin, F.-L., Li, X., & Park, S.-J. (2015). Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29, 1-11. doi:10.1016/j.jiec.2015.03.026

Yu, S., Li, X., Guo, X., Li, Z., & Zou, M. (2019). Curing and Characteristics of N,N,N′,N′-Tetraepoxypropyl-4,4′-Diaminodiphenylmethane Epoxy Resin-Based Buoyancy Material. Polymers, 11(7), 1137. doi:10.3390/polym11071137

Njuguna, J., Pielichowski, K., & Alcock, J. R. (2007). Epoxy-Based Fibre Reinforced Nanocomposites. Advanced Engineering Materials, 9(10), 835-847. doi:10.1002/adem.200700118

Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM, 58(11), 80-86. doi:10.1007/s11837-006-0234-2

Jin, N. J., Seung, I., Choi, Y. S., & Yeon, J. (2017). Prediction of early-age compressive strength of epoxy resin concrete using the maturity method. Construction and Building Materials, 152, 990-998. doi:10.1016/j.conbuildmat.2017.07.066

Yin, Y.-B., Yang, Q.-S., Wang, S.-L., Gao, H.-D., He, Y.-W., & Li, X.-L. (2019). Formation of CO2 bubbles in epoxy resin coatings: A DFT study. Journal of Molecular Graphics and Modelling, 86, 192-198. doi:10.1016/j.jmgm.2018.10.018

Jin, F.-L., & Park, S.-J. (2008). Thermomechanical behavior of epoxy resins modified with epoxidized vegetable oils. Polymer International, 57(4), 577-583. doi:10.1002/pi.2280

Kim, Kim, Hwang, & Kim. (2019). Embedded Based Real-Time Monitoring in the High-Pressure Resin Transfer Molding Process for CFRP. Applied Sciences, 9(9), 1795. doi:10.3390/app9091795

Rudawska, A. (2019). The Impact of the Seasoning Conditions on Mechanical Properties of Modified and Unmodified Epoxy Adhesive Compounds. Polymers, 11(5), 804. doi:10.3390/polym11050804

Enns, J. B., & Gillham, J. K. (1983). Effect of the extent of cure on the modulus, glass transition, water absorptio, and density of an amine-cured epoxy. Journal of Applied Polymer Science, 28(9), 2831-2846. doi:10.1002/app.1983.070280914

Ivankovic, M., Incarnato, L., Kenny, J. M., & Nicolais, L. (2003). Curing kinetics and chemorheology of epoxy/anhydride system. Journal of Applied Polymer Science, 90(11), 3012-3019. doi:10.1002/app.12976

Zilg, C., Mülhaupt, R., & Finter, J. (1999). Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromolecular Chemistry and Physics, 200(3), 661-670. doi:10.1002/(sici)1521-3935(19990301)200:3<661::aid-macp661>3.0.co;2-4

Zheng, T., Wang, X., Lu, C., Zhang, X., Ji, Y., Bai, C., … Qiao, Y. (2019). Studies on Curing Kinetics and Tensile Properties of Silica-Filled Phenolic Amine/Epoxy Resin Nanocomposite. Polymers, 11(4), 680. doi:10.3390/polym11040680

Guermazi, N., Haddar, N., Elleuch, K., & Ayedi, H. F. (2014). Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures. Materials & Design (1980-2015), 56, 714-724. doi:10.1016/j.matdes.2013.11.043

Park, S.-J., Seo, M.-K., & Lee, J.-R. (2000). Isothermal cure kinetics of epoxy/phenol-novolac resin blend system initiated by cationic latent thermal catalyst. Journal of Polymer Science Part A: Polymer Chemistry, 38(16), 2945-2956. doi:10.1002/1099-0518(20000815)38:16<2945::aid-pola120>3.0.co;2-6

Mostovoy, S., & Ripling, E. J. (1966). Fracture toughness of an epoxy system. Journal of Applied Polymer Science, 10(9), 1351-1371. doi:10.1002/app.1966.070100913

Fu, K., Xie, Q., LÜ, F., Duan, Q., Wang, X., Zhu, Q., & Huang, Z. (2019). Molecular Dynamics Simulation and Experimental Studies on the Thermomechanical Properties of Epoxy Resin with Different Anhydride Curing Agents. Polymers, 11(6), 975. doi:10.3390/polym11060975

Kenyon, A. S., & Nielsen, L. E. (1969). Characterization of Network Structure of Epoxy Resins by Dynamic Mechanical and Liquid Swelling Tests. Journal of Macromolecular Science: Part A - Chemistry, 3(2), 275-295. doi:10.1080/10601326908053811

Czub, P. (2006). Application of Modified Natural Oils as Reactive Diluents for Epoxy Resins. Macromolecular Symposia, 242(1), 60-64. doi:10.1002/masy.200651010

Park, Y. T., Qian, Y., Chan, C., Suh, T., Nejhad, M. G., Macosko, C. W., & Stein, A. (2014). Epoxy Toughening with Low Graphene Loading. Advanced Functional Materials, 25(4), 575-585. doi:10.1002/adfm.201402553

Okabe, H., Nishimura, H., Hara, K., & Kai, S. (1997). Gelation and Glass Transition in Thermosetting Process of Epoxy Resin. Progress of Theoretical Physics Supplement, 126, 119-122. doi:10.1143/ptps.126.119

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588

Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037

Khot, S. N., Lascala, J. J., Can, E., Morye, S. S., Williams, G. I., Palmese, G. R., … Wool, R. P. (2001). Development and application of triglyceride-based polymers and composites. Journal of Applied Polymer Science, 82(3), 703-723. doi:10.1002/app.1897

Jaillet, F., Desroches, M., Auvergne, R., Boutevin, B., & Caillol, S. (2013). New biobased carboxylic acid hardeners for epoxy resins. European Journal of Lipid Science and Technology, 115(6), 698-708. doi:10.1002/ejlt.201200363

Stemmelen, M., Lapinte, V., Habas, J.-P., & Robin, J.-J. (2015). Plant oil-based epoxy resins from fatty diamines and epoxidized vegetable oil. European Polymer Journal, 68, 536-545. doi:10.1016/j.eurpolymj.2015.03.062

Pethrick, R. A., Hollins, E. A., McEwan, I., Pollock, E. A., Hayward, D., & Johncock, P. (1996). Effect of Cure Temperature on the Structure and Water Absorption of Epoxy/Amine Thermosets. Polymer International, 39(4), 275-288. doi:10.1002/(sici)1097-0126(199604)39:4<275::aid-pi508>3.0.co;2-i

Barton, J. M., Hamerton, I., Howlin, B. J., Jones, J. R., & Liu, S. (1998). Studies of cure schedule and final property relationships of a commercial epoxy resin using modified imidazole curing agents. Polymer, 39(10), 1929-1937. doi:10.1016/s0032-3861(97)00372-8

Kotnarowska, D. (1999). Influence of ultraviolet radiation and aggressive media on epoxy coating degradation. Progress in Organic Coatings, 37(3-4), 149-159. doi:10.1016/s0300-9440(99)00070-3

Imanaka, M., Liu, X., & Kimoto, M. (2017). Comparison of fracture behavior between acrylic and epoxy adhesives. International Journal of Adhesion and Adhesives, 75, 31-39. doi:10.1016/j.ijadhadh.2017.02.011

Lascano, D., Quiles-Carrillo, L., Balart, R., Boronat, T., & Montanes, N. (2019). Kinetic Analysis of the Curing of a Partially Biobased Epoxy Resin Using Dynamic Differential Scanning Calorimetry. Polymers, 11(3), 391. doi:10.3390/polym11030391

Lambert, C., Larroque, M., Subirats, J. T., & Gérard, J. (1998). Food‐contact epoxy resin: Co‐variation between migration and degree of cross‐linking. Part II. Food Additives and Contaminants, 15(3), 318-328. doi:10.1080/02652039809374647

Bueche, F. (1957). Tensile strength of rubbers. Journal of Polymer Science, 24(106), 189-200. doi:10.1002/pol.1957.1202410603

Levita, G., De Petris, S., Marchetti, A., & Lazzeri, A. (1991). Crosslink density and fracture toughness of epoxy resins. Journal of Materials Science, 26(9), 2348-2352. doi:10.1007/bf01130180

Min, B.-G., Hodgkin, J. H., & Stachurski, Z. H. (1993). The dependence of fracture properties on cure temperature in a DGEBA/DDS epoxy system. Journal of Applied Polymer Science, 48(7), 1303-1312. doi:10.1002/app.1993.070480719

Turk, M., Hamerton, I., & Ivanov, D. S. (2017). Ductility potential of brittle epoxies: Thermomechanical behaviour of plastically-deformed fully-cured composite resins. Polymer, 120, 43-51. doi:10.1016/j.polymer.2017.05.052

Gupta, V. B., & Brahatheeswaran, C. (1991). Molecular packing and free volume in crosslinked epoxy networks. Polymer, 32(10), 1875-1884. doi:10.1016/0032-3861(91)90379-w

Karkanas, P. I., & Partridge, I. K. (2000). Cure modeling and monitoring of epoxy/amine resin systems. I. Cure kinetics modeling. Journal of Applied Polymer Science, 77(7), 1419-1431. doi:10.1002/1097-4628(20000815)77:7<1419::aid-app3>3.0.co;2-n

Woo, E. M., & Seferis, J. C. (1990). Cure kinetics of epoxy/anhydride thermosetting matrix systems. Journal of Applied Polymer Science, 40(78), 1237-1256. doi:10.1002/app.1990.070400713

Karger-Kocsis, J., Grishchuk, S., Sorochynska, L., & Rong, M. Z. (2013). Curing, gelling, thermomechanical, and thermal decomposition behaviors of anhydride-cured epoxy (DGEBA)/epoxidized soybean oil compositions. Polymer Engineering & Science, 54(4), 747-755. doi:10.1002/pen.23605

Dyakonov, T., Chen, Y., Holland, K., Drbohlav, J., Burns, D., Velde, D. V., … Stevenson, W. T. K. (1996). Thermal analysis of some aromatic amine cured model epoxy resin systems—I: Materials synthesis and characterization, cure and post-cure. Polymer Degradation and Stability, 53(2), 217-242. doi:10.1016/0141-3910(96)00085-7

Chang, T. D., Carr, S. H., & Brittain, J. O. (1982). Studies of epoxy resin systems: Part B: Effect of crosslinking on the physical properties of an epoxy resin. Polymer Engineering and Science, 22(18), 1213-1220. doi:10.1002/pen.760221807

Wu, C.-S. (1992). Influence of post-curing and temperature effects on bulk density, glass transition and stress-strain behaviour of imidazole-cured epoxy network. Journal of Materials Science, 27(11), 2952-2959. doi:10.1007/bf01154105

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem