- -

Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casanova-Cháfer, Juan es_ES
dc.contributor.author García-Aboal, Rocío es_ES
dc.contributor.author Atienzar Corvillo, Pedro Enrique es_ES
dc.contributor.author LLOBET, EDUARD es_ES
dc.date.accessioned 2021-01-30T04:31:56Z
dc.date.available 2021-01-30T04:31:56Z
dc.date.issued 2019-10-20 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160316
dc.description.abstract [EN] This paper explores the gas sensing properties of graphene nanolayers decorated with lead halide perovskite (CH3NH3PbBr3) nanocrystals to detect toxic gases such as ammonia (NH3) and nitrogen dioxide (NO2). A chemical-sensitive semiconductor film based on graphene has been achieved, being decorated with CH3NH3PbBr3 perovskite (MAPbBr3) nanocrystals (NCs) synthesized, and characterized by several techniques, such as field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Reversible responses were obtained towards NO2 and NH3 at room temperature, demonstrating an enhanced sensitivity when the graphene is decorated by MAPbBr3 NCs. Furthermore, the effect of ambient moisture was extensively studied, showing that the use of perovskite NCs in gas sensors can become a promising alternative to other gas sensitive materials, due to the protective character of graphene, resulting from its high hydrophobicity. Besides, a gas sensing mechanism is proposed to understand the effects of MAPbBr3 sensing properties es_ES
dc.description.sponsorship This work was funded in part by MINECO, MICINN and FEDER via grants no. RTI2018-101580-B-I00, by AGAUR under grant. 2017SGR 418 J.C.C gratefully acknowledges a doctoral fellowship from URV under the Marti i Franques fellowship program. E.L. is supported by the Catalan institution for Research and Advanced Studies via the 2012 and 2018 Editions of the ICREA Academia Award. P.A. acknowledges the financial support from the Spanish Government through 'Severo Ochoa"(SEV-2016-0683, MINECO) and PGC2018-099744-B-I00 (MCIU/AEI/FEDER, UE), and R.G.A. acknowledges FPI scholarship the Spanish Government-MINECO for a (TEC2015-74405-JIN), MAT2015-69669-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Lead halide perovskite es_ES
dc.subject Graphene es_ES
dc.subject Gas sensing es_ES
dc.subject NO2 detection es_ES
dc.subject NH3 detection es_ES
dc.subject Room temperature sensor es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19204563 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-69669-P/ES/OPTOLECTRONICA EN NANOCAVIDADES DE ALTO INDICE DE REFRACCION. DEL SILICIO A LA PEROVSKITA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-74405-JIN/ES/MICRO- Y NANO-CAVIDADES BASADAS EN PEROVSKITA HALOGENADA. CELULAS SOLARES Y EMISORES DE LUZ/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-099744-B-I00/ES/AMPLIFICACION DE LOS FENOMENOS OPTOELECTRONICOS EN MICROCAVIDADES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101580-B-I00/ES/SENSADO DE GASES DISTRIBUIDO Y AUTONOMO EMPLEANDO NANOMATERIALES DE BAJA DIMENSION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2017 SGR 418/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Casanova-Cháfer, J.; García-Aboal, R.; Atienzar Corvillo, PE.; Llobet, E. (2019). Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature. Sensors. 19(20):1-14. https://doi.org/10.3390/s19204563 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19204563 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 20 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31635202 es_ES
dc.identifier.pmcid PMC6832145 es_ES
dc.relation.pasarela S\410797 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia de Gestión de Ayudas Universitarias y de Investigación es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references 7 Million Premature Deaths Annually Linked to Air Pollution https://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ es_ES
dc.description.references Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences, 97(18), 9875-9880. doi:10.1073/pnas.170278997 es_ES
dc.description.references Ibañez, F. J., & Zamborini, F. P. (2011). Chemiresistive Sensing with Chemically Modified Metal and Alloy Nanoparticles. Small, 8(2), 174-202. doi:10.1002/smll.201002232 es_ES
dc.description.references Mirzaei, A., Leonardi, S. G., & Neri, G. (2016). Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics International, 42(14), 15119-15141. doi:10.1016/j.ceramint.2016.06.145 es_ES
dc.description.references Zaidi, N. A., Tahir, M. W., Vellekoop, M. J., & Lang, W. (2017). A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas. Sensors, 17(10), 2283. doi:10.3390/s17102283 es_ES
dc.description.references Meng, F.-L., Guo, Z., & Huang, X.-J. (2015). Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends in Analytical Chemistry, 68, 37-47. doi:10.1016/j.trac.2015.02.008 es_ES
dc.description.references Miller, D. R., Akbar, S. A., & Morris, P. A. (2014). Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 204, 250-272. doi:10.1016/j.snb.2014.07.074 es_ES
dc.description.references Scott, S. M., James, D., & Ali, Z. (2006). Data analysis for electronic nose systems. Microchimica Acta, 156(3-4), 183-207. doi:10.1007/s00604-006-0623-9 es_ES
dc.description.references Rodríguez-Pérez, L., Herranz, M. Á., & Martín, N. (2013). The chemistry of pristine graphene. Chemical Communications, 49(36), 3721. doi:10.1039/c3cc38950b es_ES
dc.description.references Prezioso, S., Perrozzi, F., Giancaterini, L., Cantalini, C., Treossi, E., Palermo, V., … Ottaviano, L. (2013). Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing. The Journal of Physical Chemistry C, 117(20), 10683-10690. doi:10.1021/jp3085759 es_ES
dc.description.references Lipatov, A., Varezhnikov, A., Wilson, P., Sysoev, V., Kolmakov, A., & Sinitskii, A. (2013). Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale, 5(12), 5426. doi:10.1039/c3nr00747b es_ES
dc.description.references Varghese, S. S., Lonkar, S., Singh, K. K., Swaminathan, S., & Abdala, A. (2015). Recent advances in graphene based gas sensors. Sensors and Actuators B: Chemical, 218, 160-183. doi:10.1016/j.snb.2015.04.062 es_ES
dc.description.references Rodner, M., Puglisi, D., Ekeroth, S., Helmersson, U., Shtepliuk, I., Yakimova, R., … Eriksson, J. (2019). Graphene Decorated with Iron Oxide Nanoparticles for Highly Sensitive Interaction with Volatile Organic Compounds. Sensors, 19(4), 918. doi:10.3390/s19040918 es_ES
dc.description.references Kaniyoor, A., Imran Jafri, R., Arockiadoss, T., & Ramaprabhu, S. (2009). Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale, 1(3), 382. doi:10.1039/b9nr00015a es_ES
dc.description.references Seekaew, Y., Lokavee, S., Phokharatkul, D., Wisitsoraat, A., Kerdcharoen, T., & Wongchoosuk, C. (2014). Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Organic Electronics, 15(11), 2971-2981. doi:10.1016/j.orgel.2014.08.044 es_ES
dc.description.references Kang, M.-A., Ji, S., Kim, S., Park, C.-Y., Myung, S., Song, W., … An, K.-S. (2018). Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Advances, 8(22), 11991-11996. doi:10.1039/c8ra01184b es_ES
dc.description.references Fine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 10(6), 5469-5502. doi:10.3390/s100605469 es_ES
dc.description.references Sun, D., Luo, Y., Debliquy, M., & Zhang, C. (2018). Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein Journal of Nanotechnology, 9, 2832-2844. doi:10.3762/bjnano.9.264 es_ES
dc.description.references Llobet, E. (2013). Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B: Chemical, 179, 32-45. doi:10.1016/j.snb.2012.11.014 es_ES
dc.description.references Correa-Baena, J.-P., Abate, A., Saliba, M., Tress, W., Jesper Jacobsson, T., Grätzel, M., & Hagfeldt, A. (2017). The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 10(3), 710-727. doi:10.1039/c6ee03397k es_ES
dc.description.references Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., … Lam, Y. M. (2014). The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci., 7(1), 399-407. doi:10.1039/c3ee43161d es_ES
dc.description.references Juarez-Perez, E. J., Ono, L. K., Maeda, M., Jiang, Y., Hawash, Z., & Qi, Y. (2018). Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. Journal of Materials Chemistry A, 6(20), 9604-9612. doi:10.1039/c8ta03501f es_ES
dc.description.references Chen, H., Zhang, M., Bo, R., Barugkin, C., Zheng, J., Ma, Q., … Tricoli, A. (2017). Superior Self‐Powered Room‐Temperature Chemical Sensing with Light‐Activated Inorganic Halides Perovskites. Small, 14(7), 1702571. doi:10.1002/smll.201702571 es_ES
dc.description.references Kakavelakis, G., Gagaoudakis, E., Petridis, K., Petromichelaki, V., Binas, V., Kiriakidis, G., & Kymakis, E. (2017). Solution Processed CH3NH3PbI3–xClx Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sensors, 3(1), 135-142. doi:10.1021/acssensors.7b00761 es_ES
dc.description.references Bao, C., Yang, J., Zhu, W., Zhou, X., Gao, H., Li, F., … Zou, Z. (2015). A resistance change effect in perovskite CH3NH3PbI3 films induced by ammonia. Chemical Communications, 51(84), 15426-15429. doi:10.1039/c5cc06060e es_ES
dc.description.references Zhuang, Y., Yuan, W., Qian, L., Chen, S., & Shi, G. (2017). High-performance gas sensors based on a thiocyanate ion-doped organometal halide perovskite. Physical Chemistry Chemical Physics, 19(20), 12876-12881. doi:10.1039/c7cp01646h es_ES
dc.description.references Stoeckel, M.-A., Gobbi, M., Bonacchi, S., Liscio, F., Ferlauto, L., Orgiu, E., & Samorì, P. (2017). Reversible, Fast, and Wide-Range Oxygen Sensor Based on Nanostructured Organometal Halide Perovskite. Advanced Materials, 29(38), 1702469. doi:10.1002/adma.201702469 es_ES
dc.description.references Zhu, R., Zhang, Y., Zhong, H., Wang, X., Xiao, H., Chen, Y., & Li, X. (2019). High-performance room-temperature NO2 sensors based on CH3NH3PbBr3 semiconducting films: Effect of surface capping by alkyl chain on sensor performance. Journal of Physics and Chemistry of Solids, 129, 270-276. doi:10.1016/j.jpcs.2019.01.020 es_ES
dc.description.references Acik, M., & Darling, S. B. (2016). Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 4(17), 6185-6235. doi:10.1039/c5ta09911k es_ES
dc.description.references Christians, J. A., Miranda Herrera, P. A., & Kamat, P. V. (2015). Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society, 137(4), 1530-1538. doi:10.1021/ja511132a es_ES
dc.description.references Leguy, A. M. A., Hu, Y., Campoy-Quiles, M., Alonso, M. I., Weber, O. J., Azarhoosh, P., … Barnes, P. R. F. (2015). Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chemistry of Materials, 27(9), 3397-3407. doi:10.1021/acs.chemmater.5b00660 es_ES
dc.description.references O’Keeffe, P., Catone, D., Paladini, A., Toschi, F., Turchini, S., Avaldi, L., … Di Carlo, A. (2019). Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters, 19(2), 684-691. doi:10.1021/acs.nanolett.8b03685 es_ES
dc.description.references Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733k es_ES
dc.description.references Lee, G. Y., Yang, M. Y., Kim, D., Lim, J., Byun, J., Choi, D. S., … Kim, S. O. (2019). Nitrogen‐Dopant‐Induced Organic–Inorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes. Advanced Functional Materials, 29(30), 1902489. doi:10.1002/adfm.201902489 es_ES
dc.description.references Fu, X., Jiao, S., Dong, N., Lian, G., Zhao, T., Lv, S., … Cui, D. (2018). A CH3NH3PbI3 film for a room-temperature NO2 gas sensor with quick response and high selectivity. RSC Advances, 8(1), 390-395. doi:10.1039/c7ra11149e es_ES
dc.description.references Gupta, N., Nanda, O., Grover, R., & Saxena, K. (2018). A new inorganic-organic hybrid halide perovskite thin film based ammonia sensor. Organic Electronics, 58, 202-206. doi:10.1016/j.orgel.2018.04.015 es_ES
dc.description.references Air Quality Standards https://ec.europa.eu/environment/air/quality/standards.htm es_ES
dc.description.references Commission Directive 2000/39/EC https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02000L0039-20100108&from=EN es_ES
dc.description.references Schmidt, L. C., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., Mínguez Espallargas, G., … Pérez-Prieto, J. (2014). Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. Journal of the American Chemical Society, 136(3), 850-853. doi:10.1021/ja4109209 es_ES
dc.description.references Yang, G., Kim, B.-J., Kim, K., Han, J. W., & Kim, J. (2015). Energy and dose dependence of proton-irradiation damage in graphene. RSC Advances, 5(40), 31861-31865. doi:10.1039/c5ra03551a es_ES
dc.description.references D’Acunto, G., Ripanti, F., Postorino, P., Betti, M. G., Scardamaglia, M., Bittencourt, C., & Mariani, C. (2018). Channelling and induced defects at ion-bombarded aligned multiwall carbon nanotubes. Carbon, 139, 768-775. doi:10.1016/j.carbon.2018.07.032 es_ES
dc.description.references Johra, F. T., Lee, J.-W., & Jung, W.-G. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883-2887. doi:10.1016/j.jiec.2013.11.022 es_ES
dc.description.references Ganesan, K., Ghosh, S., Gopala Krishna, N., Ilango, S., Kamruddin, M., & Tyagi, A. K. (2016). A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Physical Chemistry Chemical Physics, 18(32), 22160-22167. doi:10.1039/c6cp02033j es_ES
dc.description.references Roy, S., Das, T., Ming, Y., Chen, X., Yue, C. Y., & Hu, X. (2014). Specific functionalization and polymer grafting on multiwalled carbon nanotubes to fabricate advanced nylon 12 composites. Journal of Materials Chemistry A, 2(11), 3961. doi:10.1039/c3ta14528j es_ES
dc.description.references Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., … Galiotis, C. (2008). Chemical oxidation of multiwalled carbon nanotubes. Carbon, 46(6), 833-840. doi:10.1016/j.carbon.2008.02.012 es_ES
dc.description.references Kumar, P. V., Bernardi, M., & Grossman, J. C. (2013). The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide. ACS Nano, 7(2), 1638-1645. doi:10.1021/nn305507p es_ES
dc.description.references Liu, J., Durstock, M., & Dai, L. (2014). Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ. Sci., 7(4), 1297-1306. doi:10.1039/c3ee42963f es_ES
dc.description.references Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., … Kim, K. S. (2012). Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112(11), 6156-6214. doi:10.1021/cr3000412 es_ES
dc.description.references Wang, Y., Zhang, Y., Lu, Y., Xu, W., Mu, H., Chen, C., … Bao, Q. (2015). Hybrid Graphene-Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials, 3(10), 1389-1396. doi:10.1002/adom.201500150 es_ES
dc.description.references Lv, C., Hu, C., Luo, J., Liu, S., Qiao, Y., Zhang, Z., … Watanabe, A. (2019). Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials, 9(3), 422. doi:10.3390/nano9030422 es_ES
dc.description.references Casanova-Cháfer, J., Navarrete, E., Noirfalise, X., Umek, P., Bittencourt, C., & Llobet, E. (2018). Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes. Sensors, 19(1), 113. doi:10.3390/s19010113 es_ES
dc.description.references Fang, H.-H., Adjokatse, S., Wei, H., Yang, J., Blake, G. R., Huang, J., … Loi, M. A. (2016). Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Science Advances, 2(7). doi:10.1126/sciadv.1600534 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem