- -

Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Poidevin, Laetitia es_ES
dc.contributor.author Unal, Dilek es_ES
dc.contributor.author Belda-Palazón, Borja es_ES
dc.contributor.author Ferrando Monleón, Alejandro Ramón es_ES
dc.date.accessioned 2021-02-02T04:32:35Z
dc.date.available 2021-02-02T04:32:35Z
dc.date.issued 2019-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160424
dc.description.abstract [EN] Plant polyamines (PAs) have been assigned a large number of physiological functions with unknown molecular mechanisms in many cases. Among the most abundant and studied polyamines, two of them, namely spermidine (Spd) and thermospermine (Tspm), share some molecular functions related to quality control pathways for tightly regulated mRNAs at the level of translation. In this review, we focus on the roles of Tspm and Spd to facilitate the translation of mRNAs containing upstream ORFs (uORFs), premature stop codons, and ribosome stalling sequences that may block translation, thus preventing their degradation by quality control mechanisms such as the nonsense-mediated decay pathway and possible interactions with other mRNA quality surveillance pathways. es_ES
dc.description.sponsorship A.F. was funded by the Spanish Ministry of Science, Innovation and Universities, grant number BIO2015-70483-R, and B.B.-P. was funded by the Generalitat Valenciana grant, VALi+d GVA APOSTD/2017/039. D.U. was a recipient of an EMBO short-term fellowship, number STF-7308. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Plants es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Polyamines es_ES
dc.subject Spermidine es_ES
dc.subject Thermospermine es_ES
dc.subject Nonsense-mediated decay es_ES
dc.subject No-go decay es_ES
dc.subject Non-stop decay es_ES
dc.subject Quality control es_ES
dc.subject Translation es_ES
dc.title Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/plants8040109 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2015-70483-R/ES/PAPEL DE LA ESPERMIDINA Y DE LA BIOSINTESIS DE PROTEINAS EN LA TOLERANCIA DEL POLEN A LAS ALTAS TEMPERATURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F039/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EMBO//STF-7308/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Poidevin, L.; Unal, D.; Belda-Palazón, B.; Ferrando Monleón, AR. (2019). Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level. Plants. 8(4):1-13. https://doi.org/10.3390/plants8040109 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/plants8040109 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2223-7747 es_ES
dc.identifier.pmid 31022874 es_ES
dc.identifier.pmcid PMC6524035 es_ES
dc.relation.pasarela S\406565 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Molecular Biology Organization es_ES
dc.description.references Graille, M., & Séraphin, B. (2012). Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nature Reviews Molecular Cell Biology, 13(11), 727-735. doi:10.1038/nrm3457 es_ES
dc.description.references Preissler, S., & Deuerling, E. (2012). Ribosome-associated chaperones as key players in proteostasis. Trends in Biochemical Sciences, 37(7), 274-283. doi:10.1016/j.tibs.2012.03.002 es_ES
dc.description.references Fuell, C., Elliott, K. A., Hanfrey, C. C., Franceschetti, M., & Michael, A. J. (2010). Polyamine biosynthetic diversity in plants and algae. Plant Physiology and Biochemistry, 48(7), 513-520. doi:10.1016/j.plaphy.2010.02.008 es_ES
dc.description.references Vera-Sirera, F., Minguet, E. G., Singh, S. K., Ljung, K., Tuominen, H., Blázquez, M. A., & Carbonell, J. (2010). Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 48(7), 534-539. doi:10.1016/j.plaphy.2010.01.011 es_ES
dc.description.references IGARASHI, K., SUGAWARA, K., IZUMI, I., NAGAYAMA, C., & HIROSE, S. (1974). Effect of Polyamines on Polyphenylalanine Synthesis by Escherichia coli and Rat-Liver Ribosomes. European Journal of Biochemistry, 48(2), 495-502. doi:10.1111/j.1432-1033.1974.tb03790.x es_ES
dc.description.references IGARASHI, K., HASHIMOTO, S., MIYAKE, A., KASHIWAGI, K., & HIROSE, S. (2005). Increase of Fidelity of Polypeptide Synthesis by Spermidine in Eukaryotic Cell-Free Systems. European Journal of Biochemistry, 128(2-3), 597-604. doi:10.1111/j.1432-1033.1982.tb07006.x es_ES
dc.description.references Echandi, G., & Algranati, I. D. (1975). Defective 30S ribosomal particles in a polyamine auxotroph of Escherichia coli. Biochemical and Biophysical Research Communications, 67(3), 1185-1191. doi:10.1016/0006-291x(75)90798-6 es_ES
dc.description.references Igarashi, K., Kishida, K., & Hirose, S. (1980). Stimulation by polyamines of enzymatic methylation of two adjacent adenines near the 3′ end of 16S ribosomal RNA of Escherichia coli. Biochemical and Biophysical Research Communications, 96(2), 678-684. doi:10.1016/0006-291x(80)91408-4 es_ES
dc.description.references Hetrick, B., Khade, P. K., Lee, K., Stephen, J., Thomas, A., & Joseph, S. (2010). Polyamines Accelerate Codon Recognition by Transfer RNAs on the Ribosome. Biochemistry, 49(33), 7179-7189. doi:10.1021/bi1009776 es_ES
dc.description.references Amarantos, I. (2000). Photoaffinity polyamines: interactions with AcPhe-tRNA free in solution or bound at the P-site of Escherichia coli ribosomes. Nucleic Acids Research, 28(19), 3733-3742. doi:10.1093/nar/28.19.3733 es_ES
dc.description.references Amarantos, I. (2002). The identification of spermine binding sites in 16S rRNA allows interpretation of the spermine effect on ribosomal 30S subunit functions. Nucleic Acids Research, 30(13), 2832-2843. doi:10.1093/nar/gkf404 es_ES
dc.description.references Xaplanteri, M. A. (2005). Localization of spermine binding sites in 23S rRNA by photoaffinity labeling: parsing the spermine contribution to ribosomal 50S subunit functions. Nucleic Acids Research, 33(9), 2792-2805. doi:10.1093/nar/gki557 es_ES
dc.description.references Dever, T. E., & Ivanov, I. P. (2018). Roles of polyamines in translation. Journal of Biological Chemistry, 293(48), 18719-18729. doi:10.1074/jbc.tm118.003338 es_ES
dc.description.references Ivanov, I. P. (2000). Conservation of polyamine regulation by translational frameshifting from yeast to mammals. The EMBO Journal, 19(8), 1907-1917. doi:10.1093/emboj/19.8.1907 es_ES
dc.description.references Brandman, O., & Hegde, R. S. (2016). Ribosome-associated protein quality control. Nature Structural & Molecular Biology, 23(1), 7-15. doi:10.1038/nsmb.3147 es_ES
dc.description.references Behm-Ansmant, I., Kashima, I., Rehwinkel, J., Saulière, J., Wittkopp, N., & Izaurralde, E. (2007). mRNA quality control: An ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Letters, 581(15), 2845-2853. doi:10.1016/j.febslet.2007.05.027 es_ES
dc.description.references Chang, Y.-F., Imam, J. S., & Wilkinson, M. F. (2007). The Nonsense-Mediated Decay RNA Surveillance Pathway. Annual Review of Biochemistry, 76(1), 51-74. doi:10.1146/annurev.biochem.76.050106.093909 es_ES
dc.description.references Brogna, S., & Wen, J. (2009). Nonsense-mediated mRNA decay (NMD) mechanisms. Nature Structural & Molecular Biology, 16(2), 107-113. doi:10.1038/nsmb.1550 es_ES
dc.description.references Amrani, N., Sachs, M. S., & Jacobson, A. (2006). Early nonsense: mRNA decay solves a translational problem. Nature Reviews Molecular Cell Biology, 7(6), 415-425. doi:10.1038/nrm1942 es_ES
dc.description.references Rebbapragada, I., & Lykke-Andersen, J. (2009). Execution of nonsense-mediated mRNA decay: what defines a substrate? Current Opinion in Cell Biology, 21(3), 394-402. doi:10.1016/j.ceb.2009.02.007 es_ES
dc.description.references Peccarelli, M., & Kebaara, B. W. (2014). Regulation of Natural mRNAs by the Nonsense-Mediated mRNA Decay Pathway. Eukaryotic Cell, 13(9), 1126-1135. doi:10.1128/ec.00090-14 es_ES
dc.description.references Kurihara, Y., Matsui, A., Hanada, K., Kawashima, M., Ishida, J., Morosawa, T., … Seki, M. (2009). Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis. Proceedings of the National Academy of Sciences, 106(7), 2453-2458. doi:10.1073/pnas.0808902106 es_ES
dc.description.references Drechsel, G., Kahles, A., Kesarwani, A. K., Stauffer, E., Behr, J., Drewe, P., … Wachter, A. (2013). Nonsense-Mediated Decay of Alternative Precursor mRNA Splicing Variants Is a Major Determinant of the Arabidopsis Steady State Transcriptome. The Plant Cell, 25(10), 3726-3742. doi:10.1105/tpc.113.115485 es_ES
dc.description.references Kalyna, M., Simpson, C. G., Syed, N. H., Lewandowska, D., Marquez, Y., Kusenda, B., … Brown, J. W. S. (2011). Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Research, 40(6), 2454-2469. doi:10.1093/nar/gkr932 es_ES
dc.description.references Leeds, P., Wood, J. M., Lee, B. S., & Culbertson, M. R. (1992). Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Molecular and Cellular Biology, 12(5), 2165-2177. doi:10.1128/mcb.12.5.2165 es_ES
dc.description.references Kerényi, Z., Mérai, Z., Hiripi, L., Benkovics, A., Gyula, P., Lacomme, C., … Silhavy, D. (2008). Inter-kingdom conservation of mechanism of nonsense-mediated mRNA decay. The EMBO Journal, 27(11), 1585-1595. doi:10.1038/emboj.2008.88 es_ES
dc.description.references Shaul, O. (2015). Unique Aspects of Plant Nonsense-Mediated mRNA Decay. Trends in Plant Science, 20(11), 767-779. doi:10.1016/j.tplants.2015.08.011 es_ES
dc.description.references Rayson, S., Arciga-Reyes, L., Wootton, L., De Torres Zabala, M., Truman, W., Graham, N., … Davies, B. (2012). A Role for Nonsense-Mediated mRNA Decay in Plants: Pathogen Responses Are Induced in Arabidopsis thaliana NMD Mutants. PLoS ONE, 7(2), e31917. doi:10.1371/journal.pone.0031917 es_ES
dc.description.references Shi, C., Baldwin, I. T., & Wu, J. (2012). Arabidopsis Plants Having Defects in Nonsense-mediated mRNA Decay Factors UPF1, UPF2, and UPF3 Show Photoperiod-dependent Phenotypes in Development and Stress Responses. Journal of Integrative Plant Biology, 54(2), 99-114. doi:10.1111/j.1744-7909.2012.01093.x es_ES
dc.description.references Nasim, Z., Fahim, M., & Ahn, J. H. (2017). Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00191 es_ES
dc.description.references Degtiar, E., Fridman, A., Gottlieb, D., Vexler, K., Berezin, I., Farhi, R., … Shaul, O. (2015). The feedback control of UPF3 is crucial for RNA surveillance in plants. Nucleic Acids Research, 43(8), 4219-4235. doi:10.1093/nar/gkv237 es_ES
dc.description.references Popp, M. W.-L., & Maquat, L. E. (2013). Organizing Principles of Mammalian Nonsense-Mediated mRNA Decay. Annual Review of Genetics, 47(1), 139-165. doi:10.1146/annurev-genet-111212-133424 es_ES
dc.description.references Dai, Y., Li, W., & An, L. (2015). NMD mechanism and the functions of Upf proteins in plant. Plant Cell Reports, 35(1), 5-15. doi:10.1007/s00299-015-1867-9 es_ES
dc.description.references Karousis, E. D., & Mühlemann, O. (2018). Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Cold Spring Harbor Perspectives in Biology, 11(2), a032862. doi:10.1101/cshperspect.a032862 es_ES
dc.description.references Doma, M. K., & Parker, R. (2006). Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature, 440(7083), 561-564. doi:10.1038/nature04530 es_ES
dc.description.references Atkinson, G. C., Baldauf, S. L., & Hauryliuk, V. (2008). Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evolutionary Biology, 8(1), 290. doi:10.1186/1471-2148-8-290 es_ES
dc.description.references Szádeczky-Kardoss, I., Gál, L., Auber, A., Taller, J., & Silhavy, D. (2018). The No-go decay system degrades plant mRNAs that contain a long A-stretch in the coding region. Plant Science, 275, 19-27. doi:10.1016/j.plantsci.2018.07.008 es_ES
dc.description.references Shoemaker, C. J., Eyler, D. E., & Green, R. (2010). Dom34:Hbs1 Promotes Subunit Dissociation and Peptidyl-tRNA Drop-Off to Initiate No-Go Decay. Science, 330(6002), 369-372. doi:10.1126/science.1192430 es_ES
dc.description.references Tsuboi, T., Kuroha, K., Kudo, K., Makino, S., Inoue, E., Kashima, I., & Inada, T. (2012). Dom34:Hbs1 Plays a General Role in Quality-Control Systems by Dissociation of a Stalled Ribosome at the 3′ End of Aberrant mRNA. Molecular Cell, 46(4), 518-529. doi:10.1016/j.molcel.2012.03.013 es_ES
dc.description.references Buchan, J. R., & Stansfield, I. (2007). Halting a cellular production line: responses to ribosomal pausing during translation. Biology of the Cell, 99(9), 475-487. doi:10.1042/bc20070037 es_ES
dc.description.references Simms, C. L., Yan, L. L., & Zaher, H. S. (2017). Ribosome Collision Is Critical for Quality Control during No-Go Decay. Molecular Cell, 68(2), 361-373.e5. doi:10.1016/j.molcel.2017.08.019 es_ES
dc.description.references Ozsolak, F., Kapranov, P., Foissac, S., Kim, S. W., Fishilevich, E., Monaghan, A. P., … Milos, P. M. (2010). Comprehensive Polyadenylation Site Maps in Yeast and Human Reveal Pervasive Alternative Polyadenylation. Cell, 143(6), 1018-1029. doi:10.1016/j.cell.2010.11.020 es_ES
dc.description.references Dimitrova, L. N., Kuroha, K., Tatematsu, T., & Inada, T. (2009). Nascent Peptide-dependent Translation Arrest Leads to Not4p-mediated Protein Degradation by the Proteasome. Journal of Biological Chemistry, 284(16), 10343-10352. doi:10.1074/jbc.m808840200 es_ES
dc.description.references Koutmou, K. S., Schuller, A. P., Brunelle, J. L., Radhakrishnan, A., Djuranovic, S., & Green, R. (2015). Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife, 4. doi:10.7554/elife.05534 es_ES
dc.description.references Van Hoof, A., Frischmeyer, P. A., Dietz, H. C., & Parker, R. (2002). Exosome-Mediated Recognition and Degradation of mRNAs Lacking a Termination Codon. Science, 295(5563), 2262-2264. doi:10.1126/science.1067272 es_ES
dc.description.references Frischmeyer, P. A., van Hoof, A., O’Donnell, K., Guerrerio, A. L., Parker, R., & Dietz, H. C. (2002). An mRNA Surveillance Mechanism That Eliminates Transcripts Lacking Termination Codons. Science, 295(5563), 2258-2261. doi:10.1126/science.1067338 es_ES
dc.description.references Szádeczky-Kardoss, I., Csorba, T., Auber, A., Schamberger, A., Nyikó, T., Taller, J., … Silhavy, D. (2018). The nonstop decay and the RNA silencing systems operate cooperatively in plants. Nucleic Acids Research, 46(9), 4632-4648. doi:10.1093/nar/gky279 es_ES
dc.description.references Hanzawa, Y., Takahashi, T., & Komeda, Y. (1997). ACL5: an Arabidopsis gene required for internodal elongation after flowering. The Plant Journal, 12(4), 863-874. doi:10.1046/j.1365-313x.1997.12040863.x es_ES
dc.description.references Hanzawa, Y. (2000). ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. The EMBO Journal, 19(16), 4248-4256. doi:10.1093/emboj/19.16.4248 es_ES
dc.description.references Knott, J. M., Römer, P., & Sumper, M. (2007). Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081-3086. doi:10.1016/j.febslet.2007.05.074 es_ES
dc.description.references Minguet, E. G., Vera-Sirera, F., Marina, A., Carbonell, J., & Blazquez, M. A. (2008). Evolutionary Diversification in Polyamine Biosynthesis. Molecular Biology and Evolution, 25(10), 2119-2128. doi:10.1093/molbev/msn161 es_ES
dc.description.references Milhinhos, A., Prestele, J., Bollhöner, B., Matos, A., Vera-Sirera, F., Rambla, J. L., … Miguel, C. M. (2013). Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism inPopulusxylem. The Plant Journal, 75(4), 685-698. doi:10.1111/tpj.12231 es_ES
dc.description.references Baima, S., Forte, V., Possenti, M., Peñalosa, A., Leoni, G., Salvi, S., … Morelli, G. (2014). Negative Feedback Regulation of Auxin Signaling by ATHB8/ACL5–BUD2 Transcription Module. Molecular Plant, 7(6), 1006-1025. doi:10.1093/mp/ssu051 es_ES
dc.description.references Kakehi, J. -i., Kuwashiro, Y., Niitsu, M., & Takahashi, T. (2008). Thermospermine is Required for Stem Elongation in Arabidopsis thaliana. Plant and Cell Physiology, 49(9), 1342-1349. doi:10.1093/pcp/pcn109 es_ES
dc.description.references Clay, N. K., & Nelson, T. (2005). Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport. Plant Physiology, 138(2), 767-777. doi:10.1104/pp.104.055756 es_ES
dc.description.references Muñiz, L., Minguet, E. G., Singh, S. K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C. L., … Tuominen, H. (2008). ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development, 135(15), 2573-2582. doi:10.1242/dev.019349 es_ES
dc.description.references Imai, A., Hanzawa, Y., Komura, M., Yamamoto, K. T., Komeda, Y., & Takahashi, T. (2006). The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 133(18), 3575-3585. doi:10.1242/dev.02535 es_ES
dc.description.references Imai, A., Komura, M., Kawano, E., Kuwashiro, Y., & Takahashi, T. (2008). A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of theacl5mutant inArabidopsis thaliana. The Plant Journal, 56(6), 881-890. doi:10.1111/j.1365-313x.2008.03647.x es_ES
dc.description.references Kakehi, J.-I., Kawano, E., Yoshimoto, K., Cai, Q., Imai, A., & Takahashi, T. (2015). Mutations in Ribosomal Proteins, RPL4 and RACK1, Suppress the Phenotype of a Thermospermine-Deficient Mutant of Arabidopsis thaliana. PLOS ONE, 10(1), e0117309. doi:10.1371/journal.pone.0117309 es_ES
dc.description.references Cai, Q., Fukushima, H., Yamamoto, M., Ishii, N., Sakamoto, T., Kurata, T., … Takahashi, T. (2016). TheSAC51Family Plays a Central Role in Thermospermine Responses in Arabidopsis. Plant and Cell Physiology, 57(8), 1583-1592. doi:10.1093/pcp/pcw113 es_ES
dc.description.references Vera-Sirera, F., De Rybel, B., Úrbez, C., Kouklas, E., Pesquera, M., Álvarez-Mahecha, J. C., … Blázquez, M. A. (2015). A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 35(4), 432-443. doi:10.1016/j.devcel.2015.10.022 es_ES
dc.description.references Yamamoto, M., & Takahashi, T. (2017). Thermospermine enhances translation of SAC51 and SACL1 in Arabidopsis. Plant Signaling & Behavior, 12(1), e1276685. doi:10.1080/15592324.2016.1276685 es_ES
dc.description.references Von Arnim, A. G., Jia, Q., & Vaughn, J. N. (2014). Regulation of plant translation by upstream open reading frames. Plant Science, 214, 1-12. doi:10.1016/j.plantsci.2013.09.006 es_ES
dc.description.references Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., & Martin, W. F. (2016). The physiology and habitat of the last universal common ancestor. Nature Microbiology, 1(9). doi:10.1038/nmicrobiol.2016.116 es_ES
dc.description.references Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., Tamaoki, M., Saji, H., … Takahashi, T. (2004). Spermidine Synthase Genes Are Essential for Survival of Arabidopsis. Plant Physiology, 135(3), 1565-1573. doi:10.1104/pp.104.041699 es_ES
dc.description.references Hamasaki-Katagiri, N., Tabor, C. W., & Tabor, H. (1997). Spermidine biosynthesis in Saccharomyces cerevisiae: Polyaminerequirement of a null mutant of the SPE3 gene (spermidine synthase). Gene, 187(1), 35-43. doi:10.1016/s0378-1119(96)00660-9 es_ES
dc.description.references Mandal, S., Mandal, A., Johansson, H. E., Orjalo, A. V., & Park, M. H. (2013). Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proceedings of the National Academy of Sciences, 110(6), 2169-2174. doi:10.1073/pnas.1219002110 es_ES
dc.description.references Park, M. H., & Wolff, E. C. (2018). Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. Journal of Biological Chemistry, 293(48), 18710-18718. doi:10.1074/jbc.tm118.003341 es_ES
dc.description.references Park, M. H. (2006). The Post-Translational Synthesis of a Polyamine-Derived Amino Acid, Hypusine, in the Eukaryotic Translation Initiation Factor 5A (eIF5A). The Journal of Biochemistry, 139(2), 161-169. doi:10.1093/jb/mvj034 es_ES
dc.description.references Chattopadhyay, M. K., Park, M. H., & Tabor, H. (2008). Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proceedings of the National Academy of Sciences, 105(18), 6554-6559. doi:10.1073/pnas.0710970105 es_ES
dc.description.references Pällmann, N., Braig, M., Sievert, H., Preukschas, M., Hermans-Borgmeyer, I., Schweizer, M., … Balabanov, S. (2015). Biological Relevance and Therapeutic Potential of the Hypusine Modification System. Journal of Biological Chemistry, 290(30), 18343-18360. doi:10.1074/jbc.m115.664490 es_ES
dc.description.references Nishimura, K., Lee, S. B., Park, J. H., & Park, M. H. (2011). Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids, 42(2-3), 703-710. doi:10.1007/s00726-011-0986-z es_ES
dc.description.references Pagnussat, G. C., Yu, H.-J., Ngo, Q. A., Rajani, S., Mayalagu, S., Johnson, C. S., … Sundaresan, V. (2005). Genetic and molecular identification of genes required for female gametophyte development and function inArabidopsis. Development, 132(3), 603-614. doi:10.1242/dev.01595 es_ES
dc.description.references THOMAS, A., GOUMANS, H., AMESZ, H., BENNE, R., & VOORMA, H. O. (1979). A Comparison of the Initiation Factors of Eukaryotic Protein Synthesis from Ribosomes and from the Postribosomal Supernatant. European Journal of Biochemistry, 98(2), 329-337. doi:10.1111/j.1432-1033.1979.tb13192.x es_ES
dc.description.references Cooper, H. L., Park, M. H., Folk, J. E., Safer, B., & Braverman, R. (1983). Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D. Proceedings of the National Academy of Sciences, 80(7), 1854-1857. doi:10.1073/pnas.80.7.1854 es_ES
dc.description.references Shiba, T., Mizote, H., Kaneko, T., Nakajima, T., Yasuo, K., & sano, I. (1971). Hypusine, a new amino acid occurring in bovine brain. Biochimica et Biophysica Acta (BBA) - General Subjects, 244(3), 523-531. doi:10.1016/0304-4165(71)90069-9 es_ES
dc.description.references Park, M. H., Cooper, H. L., & Folk, J. E. (1981). Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor. Proceedings of the National Academy of Sciences, 78(5), 2869-2873. doi:10.1073/pnas.78.5.2869 es_ES
dc.description.references Saini, P., Eyler, D. E., Green, R., & Dever, T. E. (2009). Hypusine-containing protein eIF5A promotes translation elongation. Nature, 459(7243), 118-121. doi:10.1038/nature08034 es_ES
dc.description.references Schuller, A. P., Wu, C. C.-C., Dever, T. E., Buskirk, A. R., & Green, R. (2017). eIF5A Functions Globally in Translation Elongation and Termination. Molecular Cell, 66(2), 194-205.e5. doi:10.1016/j.molcel.2017.03.003 es_ES
dc.description.references Gäbel, K., Schmitt, J., Schulz, S., Näther, D. J., & Soppa, J. (2013). A Comprehensive Analysis of the Importance of Translation Initiation Factors for Haloferax volcanii Applying Deletion and Conditional Depletion Mutants. PLoS ONE, 8(11), e77188. doi:10.1371/journal.pone.0077188 es_ES
dc.description.references Kyrpides, N. C., & Woese, C. R. (1998). Universally conserved translation initiation factors. Proceedings of the National Academy of Sciences, 95(1), 224-228. doi:10.1073/pnas.95.1.224 es_ES
dc.description.references Navarre, W. W., Zou, S. B., Roy, H., Xie, J. L., Savchenko, A., Singer, A., … Fang, F. C. (2010). PoxA, YjeK, and Elongation Factor P Coordinately Modulate Virulence and Drug Resistance in Salmonella enterica. Molecular Cell, 39(2), 209-221. doi:10.1016/j.molcel.2010.06.021 es_ES
dc.description.references Lassak, J., Keilhauer, E. C., Fürst, M., Wuichet, K., Gödeke, J., Starosta, A. L., … Jung, K. (2015). Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nature Chemical Biology, 11(4), 266-270. doi:10.1038/nchembio.1751 es_ES
dc.description.references Bullwinkle, T. J., Zou, S. B., Rajkovic, A., Hersch, S. J., Elgamal, S., Robinson, N., … Ibba, M. (2013). (R)-β-Lysine-modified Elongation Factor P Functions in Translation Elongation. Journal of Biological Chemistry, 288(6), 4416-4423. doi:10.1074/jbc.m112.438879 es_ES
dc.description.references Balibar, C. J., Iwanowicz, D., & Dean, C. R. (2013). Elongation Factor P is Dispensable in Escherichia coli and Pseudomonas aeruginosa. Current Microbiology, 67(3), 293-299. doi:10.1007/s00284-013-0363-0 es_ES
dc.description.references Blaha, G., Stanley, R. E., & Steitz, T. A. (2009). Formation of the First Peptide Bond: The Structure of EF-P Bound to the 70 S Ribosome. Science, 325(5943), 966-970. doi:10.1126/science.1175800 es_ES
dc.description.references Melnikov, S., Mailliot, J., Shin, B.-S., Rigger, L., Yusupova, G., Micura, R., … Yusupov, M. (2016). Crystal Structure of Hypusine-Containing Translation Factor eIF5A Bound to a Rotated Eukaryotic Ribosome. Journal of Molecular Biology, 428(18), 3570-3576. doi:10.1016/j.jmb.2016.05.011 es_ES
dc.description.references Schmidt, C., Becker, T., Heuer, A., Braunger, K., Shanmuganathan, V., Pech, M., … Beckmann, R. (2015). Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Research, 44(4), 1944-1951. doi:10.1093/nar/gkv1517 es_ES
dc.description.references Gutierrez, E., Shin, B.-S., Woolstenhulme, C. J., Kim, J.-R., Saini, P., Buskirk, A. R., & Dever, T. E. (2013). eIF5A Promotes Translation of Polyproline Motifs. Molecular Cell, 51(1), 35-45. doi:10.1016/j.molcel.2013.04.021 es_ES
dc.description.references Doerfel, L. K., Wohlgemuth, I., Kothe, C., Peske, F., Urlaub, H., & Rodnina, M. V. (2013). EF-P Is Essential for Rapid Synthesis of Proteins Containing Consecutive Proline Residues. Science, 339(6115), 85-88. doi:10.1126/science.1229017 es_ES
dc.description.references Ude, S., Lassak, J., Starosta, A. L., Kraxenberger, T., Wilson, D. N., & Jung, K. (2013). Translation Elongation Factor EF-P Alleviates Ribosome Stalling at Polyproline Stretches. Science, 339(6115), 82-85. doi:10.1126/science.1228985 es_ES
dc.description.references Pavlov, M. Y., Watts, R. E., Tan, Z., Cornish, V. W., Ehrenberg, M., & Forster, A. C. (2008). Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proceedings of the National Academy of Sciences, 106(1), 50-54. doi:10.1073/pnas.0809211106 es_ES
dc.description.references Belda-Palazón, B., Almendáriz, C., Martí, E., Carbonell, J., & Ferrando, A. (2016). Relevance of the Axis Spermidine/eIF5A for Plant Growth and Development. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00245 es_ES
dc.description.references Li, T., Belda-Palazón, B., Ferrando, A., & Alepuz, P. (2014). Fertility and Polarized Cell Growth Depends on eIF5A for Translation of Polyproline-Rich Formins in Saccharomyces cerevisiae. Genetics, 197(4), 1191-1200. doi:10.1534/genetics.114.166926 es_ES
dc.description.references Duguay, J., Jamal, S., Liu, Z., Wang, T.-W., & Thompson, J. E. (2007). Leaf-specific suppression of deoxyhypusine synthase in Arabidopsis thaliana enhances growth without negative pleiotropic effects. Journal of Plant Physiology, 164(4), 408-420. doi:10.1016/j.jplph.2006.02.001 es_ES
dc.description.references Feng, H., Chen, Q., Feng, J., Zhang, J., Yang, X., & Zuo, J. (2007). Functional Characterization of the Arabidopsis Eukaryotic Translation Initiation Factor 5A-2 That Plays a Crucial Role in Plant Growth and Development by Regulating Cell Division, Cell Growth, and Cell Death. Plant Physiology, 144(3), 1531-1545. doi:10.1104/pp.107.098079 es_ES
dc.description.references Liu, Z., Duguay, J., Ma, F., Wang, T.-W., Tshin, R., Hopkins, M. T., … Thompson, J. E. (2008). Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana. Journal of Experimental Botany, 59(4), 939-950. doi:10.1093/jxb/ern017 es_ES
dc.description.references MA, F., LIU, Z., WANG, T.-W., HOPKINS, M. T., PETERSON, C. A., & THOMPSON, J. E. (2010). Arabidopsis eIF5A3 influences growth and the response to osmotic and nutrient stress. Plant, Cell & Environment, 33(10), 1682-1696. doi:10.1111/j.1365-3040.2010.02173.x es_ES
dc.description.references Buskirk, A. R., & Green, R. (2017). Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1716), 20160183. doi:10.1098/rstb.2016.0183 es_ES
dc.description.references Dever, T. E., Dinman, J. D., & Green, R. (2018). Translation Elongation and Recoding in Eukaryotes. Cold Spring Harbor Perspectives in Biology, 10(8), a032649. doi:10.1101/cshperspect.a032649 es_ES
dc.description.references Zuk, D. (1998). A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. The EMBO Journal, 17(10), 2914-2925. doi:10.1093/emboj/17.10.2914 es_ES
dc.description.references Schrader, R., Young, C., Kozian, D., Hoffmann, R., & Lottspeich, F. (2006). Temperature-sensitive eIF5A Mutant Accumulates Transcripts Targeted to the Nonsense-mediated Decay Pathway. Journal of Biological Chemistry, 281(46), 35336-35346. doi:10.1074/jbc.m601460200 es_ES
dc.description.references Hoque, M., Park, J. Y., Chang, Y., Luchessi, A. D., Cambiaghi, T. D., Shamanna, R., … Mathews, M. B. (2017). Regulation of gene expression by translation factor eIF5A: Hypusine-modified eIF5A enhances nonsense-mediated mRNA decay in human cells. Translation, 5(2), e1366294. doi:10.1080/21690731.2017.1366294 es_ES
dc.description.references Li, C. H., Ohn, T., Ivanov, P., Tisdale, S., & Anderson, P. (2010). eIF5A Promotes Translation Elongation, Polysome Disassembly and Stress Granule Assembly. PLoS ONE, 5(4), e9942. doi:10.1371/journal.pone.0009942 es_ES
dc.description.references Miller-Fleming, L., Olin-Sandoval, V., Campbell, K., & Ralser, M. (2015). Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. Journal of Molecular Biology, 427(21), 3389-3406. doi:10.1016/j.jmb.2015.06.020 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem