- -

Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodrigo-Ilarri, Javier es_ES
dc.contributor.author Rodrigo-Clavero, María-Elena es_ES
dc.date.accessioned 2021-02-10T04:31:46Z
dc.date.available 2021-02-10T04:31:46Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160988
dc.description.abstract [EN] Municipal solid waste (MSW) landfills are one of the main sources of greenhouse gas emissions. Biogas is formed under anaerobic conditions by decomposition of the organic matter present in waste. The estimation of biogas production, which depends fundamentally on the type of waste deposited in the landfill, is essential when designing the gas capture system and the possible generation of energy. BIOLEACH, a mathematical model for the real-time management of MSW landfills, enables the estimation of biogas generation based on the waste mix characteristics and the local meteorological conditions. This work studies the impact of installing selective organic matter collection systems on landfill biogas production. These systems reduce the content of food waste that will eventually be deposited in the landfill. Results obtained using BIOLEACH on a set of scenarios under real climate conditions in a real landfill located in the Region of Murcia (Spain) are shown. Results demonstrate that actual CH4 and CO2 production depends fundamentally on the monthly amount of waste stored in the landfill, its chemical composition and the availability and distribution of water inside the landfill mass. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Atmosphere es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Landfill es_ES
dc.subject Biogas es_ES
dc.subject Modeling es_ES
dc.subject Simulation es_ES
dc.subject Municipal solid waste es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/atmos11121306 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Rodrigo-Ilarri, J.; Rodrigo-Clavero, M. (2020). Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems. Atmosphere. 11(12):1-18. https://doi.org/10.3390/atmos11121306 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/atmos11121306 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2073-4433 es_ES
dc.relation.pasarela S\422711 es_ES
dc.description.references Calculation of CH4 and CO2 Emission Rate in Kahrizak Landfill Site THROUGH LandGEM Mathematical Model. In Proceedings of the 4th World Sustainability Forumhttps://sciforum.net/conference/wsf-4 es_ES
dc.description.references Krause, M. J., W. Chickering, G., Townsend, T. G., & Reinhart, D. R. (2016). Critical review of the methane generation potential of municipal solid waste. Critical Reviews in Environmental Science and Technology, 46(13), 1117-1182. doi:10.1080/10643389.2016.1204812 es_ES
dc.description.references Allen, M. R., Braithwaite, A., & Hills, C. C. (1997). Trace Organic Compounds in Landfill Gas at Seven U.K. Waste Disposal Sites. Environmental Science & Technology, 31(4), 1054-1061. doi:10.1021/es9605634 es_ES
dc.description.references Eklund, B., Anderson, E. P., Walker, B. L., & Burrows, D. B. (1998). Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill. Environmental Science & Technology, 32(15), 2233-2237. doi:10.1021/es980004s es_ES
dc.description.references Rey, M. D., Font, R., & Aracil, I. (2013). Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique. Energy, 63, 161-167. doi:10.1016/j.energy.2013.09.017 es_ES
dc.description.references Harborth, P., Fuß, R., Münnich, K., Flessa, H., & Fricke, K. (2013). Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N2O hotspots at the working face. Waste Management, 33(10), 2099-2107. doi:10.1016/j.wasman.2013.01.028 es_ES
dc.description.references Brown, K. A., & Maunder, D. H. (1994). Exploitation of landfill gas: a UK perspective. Water Science and Technology, 30(12), 143-151. doi:10.2166/wst.1994.0599 es_ES
dc.description.references Abbasi, T., Tauseef, S. M., & Abbasi, S. A. (2012). Biogas Energy. doi:10.1007/978-1-4614-1040-9 es_ES
dc.description.references El-Fadel, M., Findikakis, A. N., & Leckie, J. O. (1997). Environmental Impacts of Solid Waste Landfilling. Journal of Environmental Management, 50(1), 1-25. doi:10.1006/jema.1995.0131 es_ES
dc.description.references Levis, J. W., & Barlaz, M. A. (2011). Is Biodegradability a Desirable Attribute for Discarded Solid Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model. Environmental Science & Technology, 45(13), 5470-5476. doi:10.1021/es200721s es_ES
dc.description.references Farquhar, G. J., & Rovers, F. A. (1973). Gas production during refuse decomposition. Water, Air, & Soil Pollution, 2(4), 483-495. doi:10.1007/bf00585092 es_ES
dc.description.references Rees, J. F. (2007). Optimisation of methane production and refuse decomposition in landfills by temperature control. Journal of Chemical Technology and Biotechnology, 30(1), 458-465. doi:10.1002/jctb.503300158 es_ES
dc.description.references Kasali, G. B., Senior, E., & Watson-Craik, I. A. (1990). Solid-state refuse methanogenic fermentation: control and promotion by water addition. Letters in Applied Microbiology, 11(1), 22-26. doi:10.1111/j.1472-765x.1990.tb00127.x es_ES
dc.description.references Gurijala, K. R., & Suflita, J. M. (1993). Environmental factors influencing methanogenesis from refuse in landfill samples. Environmental Science & Technology, 27(6), 1176-1181. doi:10.1021/es00043a018 es_ES
dc.description.references Shariatmad, N., Sabour, M. R., Kamalan, H., Mansouri, A., & Abolfazlza, M. (2007). Applying Simple Numerical Model to Predict Methane Emission from Landfill. Journal of Applied Sciences, 7(11), 1511-1515. doi:10.3923/jas.2007.1511.1515 es_ES
dc.description.references Peer, R. L., Thorneloe, S. A., & Epperson, D. L. (1993). A comparison of methods for estimating global methane emissions from landfills. Chemosphere, 26(1-4), 387-400. doi:10.1016/0045-6535(93)90433-6 es_ES
dc.description.references Kamalan, H., Sabour, M., & Shariatmad, N. (2011). A Review on Available Landfill Gas Models. Journal of Environmental Science and Technology, 4(2), 79-92. doi:10.3923/jest.2011.79.92 es_ES
dc.description.references Majdinasab, A., Zhang, Z., & Yuan, Q. (2017). Modelling of landfill gas generation: a review. Reviews in Environmental Science and Bio/Technology, 16(2), 361-380. doi:10.1007/s11157-017-9425-2 es_ES
dc.description.references Buswell, A. M., & Mueller, H. F. (1952). Mechanism of Methane Fermentation. Industrial & Engineering Chemistry, 44(3), 550-552. doi:10.1021/ie50507a033 es_ES
dc.description.references Symons, G. E., & Buswell, A. M. (1933). The Methane Fermentation of Carbohydrates1,2. Journal of the American Chemical Society, 55(5), 2028-2036. doi:10.1021/ja01332a039 es_ES
dc.description.references Boyle, W. C. (1977). ENERGY RECOVERY FROM SANITARY LANDFILLS - A REVIEW. Microbial Energy Conversion, 119-138. doi:10.1016/b978-0-08-021791-8.50019-6 es_ES
dc.description.references GARCIADECORTAZAR, A., & MONZON, I. (2007). MODUELO 2: A new version of an integrated simulation model for municipal solid waste landfills. Environmental Modelling & Software, 22(1), 59-72. doi:10.1016/j.envsoft.2005.11.003 es_ES
dc.description.references White, J. K., & Beaven, R. P. (2013). Developments to a landfill processes model following its application to two landfill modelling challenges. Waste Management, 33(10), 1969-1981. doi:10.1016/j.wasman.2012.12.006 es_ES
dc.description.references McDougall, J. (2007). A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste. Computers and Geotechnics, 34(4), 229-246. doi:10.1016/j.compgeo.2007.02.004 es_ES
dc.description.references Bareither, C. A., Benson, C. H., & Edil, T. B. (2013). Compression of Municipal Solid Waste in Bioreactor Landfills: Mechanical Creep and Biocompression. Journal of Geotechnical and Geoenvironmental Engineering, 139(7), 1007-1021. doi:10.1061/(asce)gt.1943-5606.0000835 es_ES
dc.description.references Lu, S.-F., Xiong, J.-H., Feng, S.-J., Chen, H.-X., Bai, Z.-B., Fu, W.-D., & Lü, F. (2019). A finite-volume numerical model for bio-hydro-mechanical behaviors of municipal solid waste in landfills. Computers and Geotechnics, 109, 204-219. doi:10.1016/j.compgeo.2019.01.012 es_ES
dc.description.references Liu, X., Shi, J., Qian, X., Hu, Y., & Peng, G. (2011). One-dimensional model for municipal solid waste (MSW) settlement considering coupled mechanical-hydraulic-gaseous effect and concise calculation. Waste Management, 31(12), 2473-2483. doi:10.1016/j.wasman.2011.07.013 es_ES
dc.description.references Hettiarachchi, H., Meegoda, J., & Hettiaratchi, P. (2009). Effects of gas and moisture on modeling of bioreactor landfill settlement. Waste Management, 29(3), 1018-1025. doi:10.1016/j.wasman.2008.08.018 es_ES
dc.description.references Chen, Y., Xu, X., & Zhan, L. (2011). Analysis of solid-liquid-gas interactions in landfilled municipal solid waste by a bio-hydro-mechanical coupled model. Science China Technological Sciences, 55(1), 81-89. doi:10.1007/s11431-011-4667-7 es_ES
dc.description.references Staub, M. J., Gourc, J.-P., Drut, N., Stoltz, G., & Mansour, A. A. (2013). Large-Scale Bioreactor Pilots for Monitoring the Long-Term Hydromechanics of MSW. Journal of Hazardous, Toxic, and Radioactive Waste, 17(4), 285-294. doi:10.1061/(asce)hz.2153-5515.0000160 es_ES
dc.description.references Machado, S. L., Vilar, O. M., & Carvalho, M. F. (2008). Constitutive model for long term municipal solid waste mechanical behavior. Computers and Geotechnics, 35(5), 775-790. doi:10.1016/j.compgeo.2007.11.008 es_ES
dc.description.references Hettiarachchi, C. H., Meegoda, J. N., Tavantzis, J., & Hettiaratchi, P. (2007). Numerical model to predict settlements coupled with landfill gas pressure in bioreactor landfills. Journal of Hazardous Materials, 139(3), 514-522. doi:10.1016/j.jhazmat.2006.02.067 es_ES
dc.description.references Sivakumar Babu, G. L., Reddy, K. R., Chouskey, S. K., & Kulkarni, H. S. (2010). Prediction of Long-Term Municipal Solid Waste Landfill Settlement Using Constitutive Model. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 14(2), 139-150. doi:10.1061/(asce)hz.1944-8376.0000024 es_ES
dc.description.references Hanson, J. L., Yeşiller, N., Onnen, M. T., Liu, W.-L., Oettle, N. K., & Marinos, J. A. (2013). Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Management, 33(10), 1993-2000. doi:10.1016/j.wasman.2013.04.003 es_ES
dc.description.references Gawande, N. A., Reinhart, D. R., & Yeh, G.-T. (2010). Modeling microbiological and chemical processes in municipal solid waste bioreactor, part I: Development of a three-phase numerical model BIOKEMOD-3P. Waste Management, 30(2), 202-210. doi:10.1016/j.wasman.2009.09.009 es_ES
dc.description.references GHOLAMIFARD, S., EYMARD, R., & DUQUENNOI, C. (2008). Modeling anaerobic bioreactor landfills in methanogenic phase: Long term and short term behaviors. Water Research, 42(20), 5061-5071. doi:10.1016/j.watres.2008.09.040 es_ES
dc.description.references Garg, A., & Achari, G. (2010). A Comprehensive Numerical Model Simulating Gas, Heat, and Moisture Transport in Sanitary Landfills and Methane Oxidation in Final Covers. Environmental Modeling & Assessment, 15(5), 397-410. doi:10.1007/s10666-009-9217-3 es_ES
dc.description.references Feng, S.-J., Lu, S.-F., Chen, H. X., Fu, W.-D., & Lü, F. (2017). Three-dimensional modelling of coupled leachate and gas flow in bioreactor landfills. Computers and Geotechnics, 84, 138-151. doi:10.1016/j.compgeo.2016.11.024 es_ES
dc.description.references Grugnaletti, M., Pantini, S., Verginelli, I., & Lombardi, F. (2016). An easy-to-use tool for the evaluation of leachate production at landfill sites. Waste Management, 55, 204-219. doi:10.1016/j.wasman.2016.03.030 es_ES
dc.description.references Lei, L., Bing, L., Qiang, X., Ying, Z., & Chun, Y. (2011). The modelling of biochemical-thermal coupling effect on gas generation and transport in MSW landfill. International Journal of Environment and Pollution, 46(3/4), 216. doi:10.1504/ijep.2011.045480 es_ES
dc.description.references Zacharof, A. I., & Butler, A. P. (2004). Stochastic modelling of landfill leachate and biogas production incorporating waste heterogeneity. Model formulation and uncertainty analysis. Waste Management, 24(5), 453-462. doi:10.1016/j.wasman.2003.09.010 es_ES
dc.description.references Pommier, S., Chenu, D., Quintard, M., & Lefebvre, X. (2007). A logistic model for the prediction of the influence of water on the solid waste methanization in landfills. Biotechnology and Bioengineering, 97(3), 473-482. doi:10.1002/bit.21241 es_ES
dc.description.references Abdallah, M., Fernandes, L., Warith, M., & Rendra, S. (2009). A fuzzy logic model for biogas generation in bioreactor landfillsA paper submitted to the Journal of Environmental Engineering and Science. Canadian Journal of Civil Engineering, 36(4), 701-708. doi:10.1139/l09-015 es_ES
dc.description.references Rodrigo-Ilarri, J., Rodrigo-Clavero, M.-E., & Cassiraga, E. (2020). BIOLEACH: A New Decision Support Model for the Real-Time Management of Municipal Solid Waste Bioreactor Landfills. International Journal of Environmental Research and Public Health, 17(5), 1675. doi:10.3390/ijerph17051675 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem