- -

A family of optimal fourth-order methods for multiple roots of nonlinear equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A family of optimal fourth-order methods for multiple roots of nonlinear equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zafar, Fiza es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2021-02-13T04:31:46Z
dc.date.available 2021-02-13T04:31:46Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161200
dc.description.abstract [EN] Newton-Raphson method has always remained as the widely used method for finding simple and multiple roots of nonlinear equations. In the past years, many new methods have been introduced for finding multiple zeros that involve the use of weight function in the second step, thereby, increasing the order of convergence and giving a flexibility to generate a family of methods satisfying some underlying conditions. However, in almost all the schemes developed over the past, the usual way is to use Newton-type method at the first step. In this paper, we present a new two-step optimal fourth-order family of methods for multiple roots (m > 1). The proposed iterative family has the flexibility of choice at both steps. The development of the scheme is based on using weight functions. The first step can not only recapture Newton's method for multiple roots as special case but is also capable of defining new choices of first step. A stability analysis of some particular cases is also given to explain the dynamical behavior of the new methods around the multiple roots and decide the best values of the free parameters involved. Finally, we compare our methods with the existing schemes of the same order with a real life application as well as standard test problems. From the numerical results, we find that our methods can be considered as a better alternative for the existing procedures of same order. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economía y Competitividad MTM2014¿52016¿C2¿2¿P, Generalitat ValencianaPROMETEO/2016/089, and Schlumberger Foundation¿Faculty for Future Program es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear Equations es_ES
dc.subject Multiple zeroes es_ES
dc.subject Optimal methods es_ES
dc.subject Weight functions es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A family of optimal fourth-order methods for multiple roots of nonlinear equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.5384 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2020). A family of optimal fourth-order methods for multiple roots of nonlinear equations. Mathematical Methods in the Applied Sciences. 43(14):7869-7884. https://doi.org/10.1002/mma.5384 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.5384 es_ES
dc.description.upvformatpinicio 7869 es_ES
dc.description.upvformatpfin 7884 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\393532 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Neta, B., & Johnson, A. N. (2008). High-order nonlinear solver for multiple roots. Computers & Mathematics with Applications, 55(9), 2012-2017. doi:10.1016/j.camwa.2007.09.001 es_ES
dc.description.references Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263 es_ES
dc.description.references Li, S. G., Cheng, L. Z., & Neta, B. (2010). Some fourth-order nonlinear solvers with closed formulae for multiple roots. Computers & Mathematics with Applications, 59(1), 126-135. doi:10.1016/j.camwa.2009.08.066 es_ES
dc.description.references Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014 es_ES
dc.description.references Sharifi, M., Babajee, D. K. R., & Soleymani, F. (2012). Finding the solution of nonlinear equations by a class of optimal methods. Computers & Mathematics with Applications, 63(4), 764-774. doi:10.1016/j.camwa.2011.11.040 es_ES
dc.description.references Soleymani, F., Babajee, D. K. R., & Lotfi, T. (2013). On a numerical technique for finding multiple zeros and its dynamic. Journal of the Egyptian Mathematical Society, 21(3), 346-353. doi:10.1016/j.joems.2013.03.011 es_ES
dc.description.references Soleymani, F., & Babajee, D. K. R. (2013). Computing multiple zeros using a class of quartically convergent methods. Alexandria Engineering Journal, 52(3), 531-541. doi:10.1016/j.aej.2013.05.001 es_ES
dc.description.references Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8 es_ES
dc.description.references Behl, R., Cordero, A., Motsa, S. S., Torregrosa, J. R., & Kanwar, V. (2015). An optimal fourth-order family of methods for multiple roots and its dynamics. Numerical Algorithms, 71(4), 775-796. doi:10.1007/s11075-015-0023-5 es_ES
dc.description.references Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2017). Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations. Nonlinear Dynamics, 91(1), 81-112. doi:10.1007/s11071-017-3858-6 es_ES
dc.description.references Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-141. doi:10.1090/s0273-0979-1984-15240-6 es_ES
dc.description.references Beardon, A. F. (Ed.). (1991). Iteration of Rational Functions. Graduate Texts in Mathematics. doi:10.1007/978-1-4612-4422-6 es_ES
dc.description.references Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/780153 es_ES
dc.description.references Jay, L. O. (2001). Bit Numerical Mathematics, 41(2), 422-429. doi:10.1023/a:1021902825707 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem