- -

Triplex hybridization-based nanosystem for the rapid screening of pneumocystis pneumonia in clinical samples

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Triplex hybridization-based nanosystem for the rapid screening of pneumocystis pneumonia in clinical samples

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pla, Luis es_ES
dc.contributor.author Aviñó, Anna es_ES
dc.contributor.author Eritja, Ramón es_ES
dc.contributor.author Ruiz-Gaitán, Alba es_ES
dc.contributor.author Pemán, Javier es_ES
dc.contributor.author Friaza, Vicente es_ES
dc.contributor.author Calderón, Enrique J. es_ES
dc.contributor.author Aznar, Elena es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Santiago Felipe, Sara es_ES
dc.date.accessioned 2021-02-20T04:31:07Z
dc.date.available 2021-02-20T04:31:07Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161977
dc.description.abstract [EN] Pneumocystis pneumonia (PcP) is a disease produced by the opportunistic infection of the fungus Pneumocystis jirovecii. As delayed or unsuitable treatments increase the risk of mortality, the development of rapid and accurate diagnostic tools for PcP are of great importance. Unfortunately, current standard methods present severe limitations and are far from adequate. In this work, a time-competitive, sensitive and selective biosensor based on DNA-gated nanomaterials for the identification of P. jirovecii is presented. The biosensor consists of a nanoporous anodic alumina (NAA) scaffold which pores are filled with a dye reporter and capped with specific DNA oligonucleotides. In the presence of P. jirovecii genomic DNA, the gated biosensor is open, and the cargo is delivered to the solution where it is monitored through fluorescence spectroscopy. The use of capping oligonucleotides able to form duplex or triplex with P. jirovecii DNA is studied. The final diagnostic tool shows a limit of detection (LOD) of 1 nM of target complementary DNA and does not require previous amplification steps. The method was applied to identify DNA from P. jirovecii in unmodified bronchoalveolar lavage, nasopharyngeal aspirates, and sputum samples in 60 min. This is a promising alternative method for the routinely diagnosis of Pneumocystis pneumonia. es_ES
dc.description.sponsorship This research was funded by the Spanish Government, (projects RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and CTQ2017-84415-R), the Generalitat Valenciana (project PROMETEO/2018/024) and CIBER-BBN (projects NANOPATH and CANDI-EYE). es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Journal of Fungi es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nanoporous anodic alumina es_ES
dc.subject Pneumocystis jirovecii es_ES
dc.subject Molecular gates es_ES
dc.subject Oligonucleotides es_ES
dc.subject Biosensor es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Triplex hybridization-based nanosystem for the rapid screening of pneumocystis pneumonia in clinical samples es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/jof6040292 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-84415-R/ES/ESTUDIO DE LAS ESTRUCTURAS DE ADN CON POTENCIAL BIOMEDICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Pla, L.; Aviñó, A.; Eritja, R.; Ruiz-Gaitán, A.; Pemán, J.; Friaza, V.; Calderón, EJ.... (2020). Triplex hybridization-based nanosystem for the rapid screening of pneumocystis pneumonia in clinical samples. Journal of Fungi. 6(4):1-14. https://doi.org/10.3390/jof6040292 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/jof6040292 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2309-608X es_ES
dc.relation.pasarela S\423690 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Fauchier, T., Hasseine, L., Gari-Toussaint, M., Casanova, V., Marty, P. M., & Pomares, C. (2016). Detection of Pneumocystis jirovecii by Quantitative PCR To Differentiate Colonization and Pneumonia in Immunocompromised HIV-Positive and HIV-Negative Patients. Journal of Clinical Microbiology, 54(6), 1487-1495. doi:10.1128/jcm.03174-15 es_ES
dc.description.references Skalski, J. H., Kottom, T. J., & Limper, A. H. (2015). Pathobiology ofPneumocystispneumonia: life cycle, cell wall and cell signal transduction. FEMS Yeast Research, 15(6), fov046. doi:10.1093/femsyr/fov046 es_ES
dc.description.references Dellière, S., Gits-Muselli, M., Bretagne, S., & Alanio, A. (2019). Outbreak-Causing Fungi: Pneumocystis jirovecii. Mycopathologia. doi:10.1007/s11046-019-00408-w es_ES
dc.description.references Montes-Cano, M. A., Chabe, M., Fontillon-Alberdi, M., de la Horra, C., Respaldiza, N., Medrano, F. J., … Calderon, E. J. (2009). Vertical Transmission ofPneumocystis jiroveciiin Humans. Emerging Infectious Diseases, 15(1), 125-127. doi:10.3201/eid1501.080242 es_ES
dc.description.references Durand-Joly, I., Chabé, M., Soula, F., Delhaes, L., Camus, D., & Dei-Cas, E. (2005). Molecular diagnosis ofPneumocystispneumonia. FEMS Immunology & Medical Microbiology, 45(3), 405-410. doi:10.1016/j.femsim.2005.06.006 es_ES
dc.description.references Song, Y., Ren, Y., Wang, X., & Li, R. (2016). Recent Advances in the Diagnosis of <I>Pneumocystis</I> Pneumonia. Medical Mycology Journal, 57(4), E111-E116. doi:10.3314/mmj.16-00019 es_ES
dc.description.references Luísa Tomás, A., & Matos, O. (2018). Pneumocystis jirovecii Pneumonia: Current Advances in Laboratory Diagnosis. OBM Genetics, 2(4), 1-1. doi:10.21926/obm.genet.1804049 es_ES
dc.description.references Urabe, N., Sakamoto, S., Sano, G., Ito, A., Sekiguchi, R., & Homma, S. (2019). Serial change in serum biomarkers during treatment of Non-HIV Pneumocystis pneumonia. Journal of Infection and Chemotherapy, 25(12), 936-942. doi:10.1016/j.jiac.2019.05.007 es_ES
dc.description.references Esteves, F., Calé, S. S., Badura, R., de Boer, M. G., Maltez, F., Calderón, E. J., … Matos, O. (2015). Diagnosis of Pneumocystis pneumonia: evaluation of four serologic biomarkers. Clinical Microbiology and Infection, 21(4), 379.e1-379.e10. doi:10.1016/j.cmi.2014.11.025 es_ES
dc.description.references Tomás, A. L., Cardoso, F., Esteves, F., & Matos, O. (2016). Serological diagnosis of pneumocystosis: production of a synthetic recombinant antigen for immunodetection of Pneumocystis jirovecii. Scientific Reports, 6(1). doi:10.1038/srep36287 es_ES
dc.description.references Arvanitis, M., Anagnostou, T., Fuchs, B. B., Caliendo, A. M., & Mylonakis, E. (2014). Molecular and Nonmolecular Diagnostic Methods for Invasive Fungal Infections. Clinical Microbiology Reviews, 27(3), 490-526. doi:10.1128/cmr.00091-13 es_ES
dc.description.references Tomás, A. L., de Almeida, M. P., Cardoso, F., Pinto, M., Pereira, E., Franco, R., & Matos, O. (2019). Development of a Gold Nanoparticle-Based Lateral-Flow Immunoassay for Pneumocystis Pneumonia Serological Diagnosis at Point-of-Care. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.02917 es_ES
dc.description.references García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242 es_ES
dc.description.references Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090 es_ES
dc.description.references Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 es_ES
dc.description.references Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148 es_ES
dc.description.references Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139 es_ES
dc.description.references Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k es_ES
dc.description.references Ouyang, C., Zhang, S., Xue, C., Yu, X., Xu, H., Wang, Z., … Wu, Z.-S. (2020). Precision-Guided Missile-Like DNA Nanostructure Containing Warhead and Guidance Control for Aptamer-Based Targeted Drug Delivery into Cancer Cells in Vitro and in Vivo. Journal of the American Chemical Society, 142(3), 1265-1277. doi:10.1021/jacs.9b09782 es_ES
dc.description.references Argoubi, W., Sánchez, A., Parrado, C., Raouafi, N., & Villalonga, R. (2018). Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sensors and Actuators B: Chemical, 255, 309-315. doi:10.1016/j.snb.2017.08.045 es_ES
dc.description.references Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j es_ES
dc.description.references Pla, L., Xifré-Pérez, E., Ribes, À., Aznar, E., Marcos, M. D., Marsal, L. F., … Sancenón, F. (2017). A Mycoplasma Genomic DNA Probe using Gated Nanoporous Anodic Alumina. ChemPlusChem, 82(3), 337-341. doi:10.1002/cplu.201600651 es_ES
dc.description.references Ribes, À., Aznar, E., Santiago-Felipe, S., Xifre-Perez, E., Tormo-Mas, M. Á., Pemán, J., … Martínez-Máñez, R. (2019). Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sensors, 4(5), 1291-1298. doi:10.1021/acssensors.9b00169 es_ES
dc.description.references Goñi, J. R., Vaquerizas, J. M., Dopazo, J., & Orozco, M. (2006). Exploring the reasons for the large density of triplex-forming oligonucleotide target sequences in the human regulatory regions. BMC Genomics, 7(1). doi:10.1186/1471-2164-7-63 es_ES
dc.description.references Frank-Kamenetskii, M. D., & Mirkin, S. M. (1995). TRIPLEX DNA STRUCTURES. Annual Review of Biochemistry, 64(1), 65-95. doi:10.1146/annurev.bi.64.070195.000433 es_ES
dc.description.references Goni, J. R. (2004). Triplex-forming oligonucleotide target sequences in the human genome. Nucleic Acids Research, 32(1), 354-360. doi:10.1093/nar/gkh188 es_ES
dc.description.references Avino, A. (2002). Properties of triple helices formed by parallel-stranded hairpins containing 8-aminopurines. Nucleic Acids Research, 30(12), 2609-2619. doi:10.1093/nar/gkf374 es_ES
dc.description.references Nadal, A., Eritja, R., Esteve, T., & Pla, M. (2005). «Parallel» and «Antiparallel Tail-Clamps» Increase the Efficiency of Triplex Formation with Structured DNA and RNA Targets. ChemBioChem, 6(6), 1034-1042. doi:10.1002/cbic.200400358 es_ES
dc.description.references Carrascosa, L. G., Gómez-Montes, S., Aviñó, A., Nadal, A., Pla, M., Eritja, R., & Lechuga, L. M. (2012). Sensitive and label-free biosensing of RNA with predicted secondary structures by a triplex affinity capture method. Nucleic Acids Research, 40(8), e56-e56. doi:10.1093/nar/gkr1304 es_ES
dc.description.references Aviñó, A., Huertas, C. S., Lechuga, L. M., & Eritja, R. (2015). Sensitive and label-free detection of miRNA-145 by triplex formation. Analytical and Bioanalytical Chemistry, 408(3), 885-893. doi:10.1007/s00216-015-9180-6 es_ES
dc.description.references Wei, S., Chen, G., Jia, X., Mao, X., Chen, T., Mao, D., … Xiong, W. (2020). Exponential amplification reaction and triplex DNA mediated aggregation of gold nanoparticles for sensitive colorimetric detection of microRNA. Analytica Chimica Acta, 1095, 179-184. doi:10.1016/j.aca.2019.10.020 es_ES
dc.description.references Ribes, À., Santiago-Felipe, S., Aviñó, A., Candela-Noguera, V., Eritja, R., Sancenón, F., … Aznar, E. (2018). Design of oligonucleotide-capped mesoporous silica nanoparticles for the detection of miRNA-145 by duplex and triplex formation. Sensors and Actuators B: Chemical, 277, 598-603. doi:10.1016/j.snb.2018.09.026 es_ES
dc.description.references Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g es_ES
dc.description.references Oroval, M., Coll, C., Bernardos, A., Marcos, M. D., Martínez-Máñez, R., Shchukin, D. G., & Sancenón, F. (2017). Selective Fluorogenic Sensing of As(III) Using Aptamer-Capped Nanomaterials. ACS Applied Materials & Interfaces, 9(13), 11332-11336. doi:10.1021/acsami.6b15164 es_ES
dc.description.references Vojkuvka, L., Marsal, L. F., Ferré-Borrull, J., Formentin, P., & Pallarés, J. (2008). Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization. Superlattices and Microstructures, 44(4-5), 577-582. doi:10.1016/j.spmi.2007.10.005 es_ES
dc.description.references Matsumura, Y., Tsuchido, Y., Yamamoto, M., Nakano, S., & Nagao, M. (2018). Development of a fully automated PCR assay for the detection of Pneumocystis jirovecii using the GENECUBE system. Medical Mycology, 57(7), 841-847. doi:10.1093/mmy/myy145 es_ES
dc.description.references Yang, S.-L., Wen, Y.-H., Wu, Y.-S., Wang, M.-C., Chang, P.-Y., Yang, S., & Lu, J.-J. (2020). Diagnosis of Pneumocystis pneumonia by real-time PCR in patients with various underlying diseases. Journal of Microbiology, Immunology and Infection, 53(5), 785-790. doi:10.1016/j.jmii.2019.08.012 es_ES
dc.description.references Moodley, B., Tempia, S., & Frean, J. A. (2017). Comparison of quantitative real-time PCR and direct immunofluorescence for the detection of Pneumocystis jirovecii. PLOS ONE, 12(7), e0180589. doi:10.1371/journal.pone.0180589 es_ES
dc.description.references Alanio, A., Desoubeaux, G., Sarfati, C., Hamane, S., Bergeron, A., Azoulay, E., … Menotti, J. (2011). Real-time PCR assay-based strategy for differentiation between active Pneumocystis jirovecii pneumonia and colonization in immunocompromised patients. Clinical Microbiology and Infection, 17(10), 1531-1537. doi:10.1111/j.1469-0691.2010.03400.x es_ES
dc.description.references Marimuthu, S. (2019). Development of a Real-time PCR assay for Pneumocystis jirovecii on the Luminex ARIES® Platform. Journal of Respiratory Infections, 3(1). doi:10.18297/jri/vol3/iss1/5 es_ES
dc.description.references Cissé, O. H., Almeida, J. M. G. C. F., Fonseca, Á., Kumar, A. A., Salojärvi, J., Overmyer, K., … Pagni, M. (2013). Genome Sequencing of the Plant Pathogen Taphrina deformans , the Causal Agent of Peach Leaf Curl. mBio, 4(3). doi:10.1128/mbio.00055-13 es_ES
dc.description.references Rojas, P., Friaza, V., García, E., de la Horra, C., Vargas, S. L., Calderón, E. J., & Pavón, A. (2017). Early Acquisition of Pneumocystis jirovecii Colonization and Potential Association With Respiratory Distress Syndrome in Preterm Newborn Infants. Clinical Infectious Diseases, 65(6), 976-981. doi:10.1093/cid/cix454 es_ES
dc.description.references Kidd, S. E., Chen, S. C.-A., Meyer, W., & Halliday, C. L. (2020). A New Age in Molecular Diagnostics for Invasive Fungal Disease: Are We Ready? Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.02903 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem