- -

Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cuperus, Josh T. es_ES
dc.contributor.author CARBONELL, ALBERTO es_ES
dc.contributor.author Fahlgren, Noah es_ES
dc.contributor.author Garcia-Ruiz, Hernan es_ES
dc.contributor.author Burke, Russell T. es_ES
dc.contributor.author Takeda, Atsushi es_ES
dc.contributor.author Sullivan, Christopher M. es_ES
dc.contributor.author Gilbert, Sunny D. es_ES
dc.contributor.author Montgomery, Taiowa A. es_ES
dc.contributor.author Carrington, James C. es_ES
dc.date.accessioned 2021-02-25T04:49:34Z
dc.date.available 2021-02-25T04:49:34Z
dc.date.issued 2010-08 es_ES
dc.identifier.issn 1545-9985 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162370
dc.description.abstract [EN] NA interference pathways can involve amplification of secondary siRNAs by RNA-dependent RNA polymerases. In plants, RDR6-dependent secondary siRNAs arise from transcripts targeted by some microRNAs (miRNAs). Here, Arabidopsis thaliana secondary siRNAs from mRNA as well as trans-acting siRNAs are shown to be triggered through initial targeting by a 22-nucleotide (nt) miRNA that associates with AGO1. In contrast to canonical 21-nt miRNAs, 22-nt miRNAs primarily arise from foldback precursors containing asymmetric bulges. Using artificial miRNA constructs, conversion of asymmetric foldbacks to symmetric foldbacks resulted in the production of 21-nt forms of miR173, miR472 and miR828. Both 21- and 22-nt forms associated with AGO 1 and guided accurate slicer activity, but only 22-nt forms were competent to trigger RDR6-dependent siRNA production from target RNA. These data suggest that AGO 1 functions differentially with 21- and 22-nt miRNAs to engage the RDR6-associated amplification apparatus. es_ES
dc.description.sponsorship A. C. was supported by a postdoctoral fellowship from the Spanish Ministerio de Ciencia e Innovacion (BMC-2008-0188). This work was supported by grants from the US National Science Foundation (MCB-0618433 and MCB-0956526), the US National Institutes of Health (AI43288) and Monsanto Corporation. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Structural & Molecular Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MicroRNA es_ES
dc.subject RNA silencing es_ES
dc.subject AGO es_ES
dc.subject SiRNA es_ES
dc.title Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/nsmb.1866 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//0956526/US/Function of Arabidopsis Small RNA-ARGONAUTE Complexes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//0618433/US/Arabidopsis 2010: Functions of Arabidopsis Small RNAs/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//AI043288/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BMC-2008-0188/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Cuperus, JT.; Carbonell, A.; Fahlgren, N.; Garcia-Ruiz, H.; Burke, RT.; Takeda, A.; Sullivan, CM.... (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology. 17(8):997-1003. https://doi.org/10.1038/nsmb.1866 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/nsmb.1866 es_ES
dc.description.upvformatpinicio 997 es_ES
dc.description.upvformatpfin 1003 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 20562854 es_ES
dc.identifier.pmcid PMC2916640 es_ES
dc.relation.pasarela S\375864 es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.description.references Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009). es_ES
dc.description.references Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009). es_ES
dc.description.references Guang, S. et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science 321, 537–541 (2008). es_ES
dc.description.references Gu, W. et al. Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol. Cell 36, 231–244 (2009). es_ES
dc.description.references Claycomb, J.M. et al. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139, 123–134 (2009). es_ES
dc.description.references Carthew, R.W. & Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009). es_ES
dc.description.references Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004). es_ES
dc.description.references Makeyev, E.V. & Bamford, D.H. Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol. Cell 10, 1417–1427 (2002). es_ES
dc.description.references Sijen, T., Steiner, F.A., Thijssen, K.L. & Plasterk, R.H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315, 244–247 (2007). es_ES
dc.description.references Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241–244 (2007). es_ES
dc.description.references Motamedi, M.R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004). es_ES
dc.description.references Correa, R.L., Steiner, F.A., Berezikov, E. & Ketting, R.F. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans. PLoS Genet. 6, e1000903 (2010). es_ES
dc.description.references Voinnet, O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci. 13, 317–328 (2008). es_ES
dc.description.references Mallory, A.C., Elmayan, T. & Vaucheret, H. MicroRNA maturation and action–the expanding roles of ARGONAUTEs. Curr. Opin. Plant Biol. 11, 560–566 (2008). es_ES
dc.description.references Howell, M.D. et al. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19, 926–942 (2007). es_ES
dc.description.references Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H.L. & Poethig, R.S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18, 2368–2379 (2004). es_ES
dc.description.references Vazquez, F. et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16, 69–79 (2004). es_ES
dc.description.references Rajagopalan, R., Vaucheret, H., Trejo, J. & Bartel, D.P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20, 3407–3425 (2006). es_ES
dc.description.references Axtell, M.J., Jan, C., Rajagopalan, R. & Bartel, D.P.A. Two-hit trigger for siRNA biogenesis in plants. Cell 127, 565–577 (2006). es_ES
dc.description.references Ronemus, M., Vaughn, M.W. & Martienssen, R.A. MicroRNA-targeted and small interfering RNA-mediated mRNA degradation is regulated by argonaute, dicer, and RNA-dependent RNA polymerase in Arabidopsis. Plant Cell 18, 1559–1574 (2006). es_ES
dc.description.references Chiba, Y. & Green, P.J. mRNA degredation machinery in plants. J. Plant Biol. 52, 114–124 (2009). es_ES
dc.description.references Gregory, B.D. et al. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev. Cell 14, 854–866 (2008). es_ES
dc.description.references Allen, E., Xie, Z., Gustafson, A.M. & Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005). es_ES
dc.description.references Baumberger, N. & Baulcombe, D.C. Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. USA 102, 11928–11933 (2005). es_ES
dc.description.references Montgomery, T.A. et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128–141 (2008). es_ES
dc.description.references Yoshikawa, M., Peragine, A., Park, M.Y. & Poethig, R.S. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev. 19, 2164–2175 (2005). es_ES
dc.description.references Xie, Z., Allen, E., Wilken, A. & Carrington, J.C. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 102, 12984–12989 (2005). es_ES
dc.description.references Dunoyer, P., Himber, C. & Voinnet, O. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat. Genet. 37, 1356–1360 (2005). es_ES
dc.description.references Gasciolli, V., Mallory, A.C., Bartel, D.P. & Vaucheret, H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15, 1494–1500 (2005). es_ES
dc.description.references Montgomery, T.A. et al. AGO1-miR173 complex initiates phased siRNA formation in plants. Proc. Natl. Acad. Sci. USA 105, 20055–20062 (2008). es_ES
dc.description.references Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 12, 1484–1495 (2002). es_ES
dc.description.references Bouche, N., Lauressergues, D., Gasciolli, V. & Vaucheret, H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 25, 3347–3356 (2006). es_ES
dc.description.references Mi, S. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127 (2008). es_ES
dc.description.references Vaucheret, H. AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 species by MIR168a and MIR168b. PLoS One 4, e6442 (2009). es_ES
dc.description.references Mallory, A.C. & Vaucheret, H. ARGONAUTE 1 homeostasis invokes the coordinate action of the microRNA and siRNA pathways. EMBO Rep. 10, 521–526 (2009). es_ES
dc.description.references Johnson, C. et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res. 19, 1429–1440 (2009). es_ES
dc.description.references Chen, H.M., Li, Y.H. & Wu, S.H. Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc. Natl. Acad. Sci. USA 104, 3318–3323 (2007). es_ES
dc.description.references Addo-Quaye, C., Eshoo, T.W., Bartel, D.P. & Axtell, M.J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758–762 (2008). es_ES
dc.description.references Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008). es_ES
dc.description.references Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009). es_ES
dc.description.references Eulalio, A., Tritschler, F. & Izaurralde, E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA 15, 1433–1442 (2009). es_ES
dc.description.references El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21, 2539–2544 (2007). es_ES
dc.description.references Bies-Etheve, N. et al. RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep. 10, 649–654 (2009). es_ES
dc.description.references He, X.J. et al. An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 137, 498–508 (2009). es_ES
dc.description.references Blevins, T. et al. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 34, 6233–6246 (2006). es_ES
dc.description.references Deleris, A. et al. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313, 68–71 (2006). es_ES
dc.description.references Diaz-Pendon, J.A., Li, F., Li, W.X. & Ding, S.W. Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19, 2053–2063 (2007). es_ES
dc.description.references Garcia-Ruiz, H. et al. Arabidopsis RNA-dependent RNA polymerases and Dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. Plant Cell 22, 481–496 (2010). es_ES
dc.description.references Mlotshwa, S. et al. DICER-LIKE 2 plays a primary role in transitive silencing of transgenes in Arabidopsis. PLoS One 3, e1755 (2008). es_ES
dc.description.references Mateos, J.L., Bologna, N.G., Chorostecki, U. & Palatnik, J.F. Identification of MicroRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr. Biol. 20, 49–54 (2010). es_ES
dc.description.references Song, L., Axtell, M.J. & Fedoroff, N.V. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr. Biol. 20, 37–41 (2010). es_ES
dc.description.references Werner, S., Wollmann, H., Schneeberger, K. & Weigel, D. Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr. Biol. 20, 42–48 (2010). es_ES
dc.description.references Macrae, I.J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006). es_ES
dc.description.references MacRae, I.J., Zhou, K. & Doudna, J.A. Structural determinants of RNA recognition and cleavage by Dicer. Nat. Struct. Mol. Biol. 14, 934–940 (2007). es_ES
dc.description.references Qin, H. et al. Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction. RNA 16, 474–481 (2010). es_ES
dc.description.references Parisien, M. & Major, F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452, 51–55 (2008). es_ES
dc.description.references Meyers, B.C. et al. Criteria for annotation of plant microRNAs. Plant Cell 20, 3186–3190 (2008). es_ES
dc.description.references Cuperus, J.T. et al. Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc. Natl. Acad. Sci. USA 107, 466–471 (2010). es_ES
dc.description.references Llave, C., Xie, Z., Kasschau, K.D. & Carrington, J.C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002). es_ES
dc.description.references Fahlgren, N. et al. Computational and analytical framework for small RNA profiling by high-throughput sequencing. RNA 15, 992–1002 (2009). es_ES
dc.description.references Maindonald, J.H. & Braun, J. Data Analysis and Graphics Using R: An Example-Based Approach. (Cambridge University Press, New York, USA, 2007). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem