- -

A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escorihuela, Jorge es_ES
dc.contributor.author Garcia-Bernabe, Abel es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.date.accessioned 2021-03-01T08:08:07Z
dc.date.available 2021-03-01T08:08:07Z
dc.date.issued 2020-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162560
dc.description.abstract [EN] The use of phosphoric acid doped polybenzimidazole (PBI) membranes for fuel cell applications has been extensively studied in the past decades. In this article, we present a systematic study of the physicochemical properties and proton conductivity of PBI membranes doped with the commonly used phosphoric acid at different concentrations (0.1, 1, and 14 M), and with other alternative acids such as phytic acid (0.075 M) and phosphotungstic acid (HPW, 0.1 M). The use of these three acids was reflected in the formation of channels in the polymeric network as observed by cross-section SEM images. The acid doping enhanced proton conductivity of PBI membranes and, after doping, these conducting materials maintained their mechanical properties and thermal stability for their application as proton exchange membrane fuel cells, capable of operating at intermediate or high temperatures. Under doping with similar acidic concentrations, membranes with phytic acid displayed a superior conducting behavior when compared to doping with phosphoric acid or phosphotungstic acid. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministerio de Economia y Competitividad (MINECO) under the project ENE/2015-69203-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fuel cells es_ES
dc.subject Proton conductivity es_ES
dc.subject Electrochemical impedance spectroscopy es_ES
dc.subject Polymer es_ES
dc.subject Polybenzimidazole es_ES
dc.subject Proton exchange membrane es_ES
dc.subject Phosphoric acid es_ES
dc.subject Phytic acid es_ES
dc.subject Phosphotungstic acid es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12061374 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Escorihuela, J.; Garcia-Bernabe, A.; Compañ Moreno, V. (2020). A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers. 12(6):1-17. https://doi.org/10.3390/polym12061374 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym12061374 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 32570990 es_ES
dc.identifier.pmcid PMC7361977 es_ES
dc.relation.pasarela S\423657 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Earth’s CO2 Home Pagehttps://www.co2.earth/ es_ES
dc.description.references Kreuer, K.-D. (1996). Proton Conductivity:  Materials and Applications. Chemistry of Materials, 8(3), 610-641. doi:10.1021/cm950192a es_ES
dc.description.references Kreuer, K.-D., & Portale, G. (2013). A Critical Revision of the Nano-Morphology of Proton Conducting Ionomers and Polyelectrolytes for Fuel Cell Applications. Advanced Functional Materials, 23(43), 5390-5397. doi:10.1002/adfm.201300376 es_ES
dc.description.references Bakangura, E., Wu, L., Ge, L., Yang, Z., & Xu, T. (2016). Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 57, 103-152. doi:10.1016/j.progpolymsci.2015.11.004 es_ES
dc.description.references Papadimitriou, K. D., Paloukis, F., Neophytides, S. G., & Kallitsis, J. K. (2011). Cross-Linking of Side Chain Unsaturated Aromatic Polyethers for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications. Macromolecules, 44(12), 4942-4951. doi:10.1021/ma200351z es_ES
dc.description.references Di Noto, V., Lavina, S., Giffin, G. A., Negro, E., & Scrosati, B. (2011). Polymer electrolytes: Present, past and future. Electrochimica Acta, 57, 4-13. doi:10.1016/j.electacta.2011.08.048 es_ES
dc.description.references Tarascon, J.-M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. doi:10.1038/35104644 es_ES
dc.description.references Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123 es_ES
dc.description.references Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. doi:10.1016/j.jpowsour.2006.06.023 es_ES
dc.description.references Li, Q., He, R., Gao, J.-A., Jensen, J. O., & Bjerrum, N. J. (2003). The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C. Journal of The Electrochemical Society, 150(12), A1599. doi:10.1149/1.1619984 es_ES
dc.description.references Jannasch, P. (2003). Recent developments in high-temperature proton conducting polymer electrolyte membranes. Current Opinion in Colloid & Interface Science, 8(1), 96-102. doi:10.1016/s1359-0294(03)00006-2 es_ES
dc.description.references Purnima, P., & Jayanti, S. (2017). Water neutrality and waste heat management in ethanol reformer - HTPEMFC integrated system for on-board hydrogen generation. Applied Energy, 199, 169-179. doi:10.1016/j.apenergy.2017.04.069 es_ES
dc.description.references Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., & McGrath, J. E. (2004). Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews, 104(10), 4587-4612. doi:10.1021/cr020711a es_ES
dc.description.references Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k es_ES
dc.description.references Reinholdt, M. X., & Kaliaguine, S. (2010). Proton Exchange Membranes for Application in Fuel Cells: Grafted Silica/SPEEK Nanocomposite Elaboration and Characterization. Langmuir, 26(13), 11184-11195. doi:10.1021/la100051j es_ES
dc.description.references Dhanapal, Xiao, Wang, & Meng. (2019). A Review on Sulfonated Polymer Composite/Organic-Inorganic Hybrid Membranes to Address Methanol Barrier Issue for Methanol Fuel Cells. Nanomaterials, 9(5), 668. doi:10.3390/nano9050668 es_ES
dc.description.references Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024 es_ES
dc.description.references Asensio, J. A., Sánchez, E. M., & Gómez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650h es_ES
dc.description.references Vogel, H., & Marvel, C. S. (1961). Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science, 50(154), 511-539. doi:10.1002/pol.1961.1205015419 es_ES
dc.description.references Wainright, J. S., Wang, J. ‐T., Weng, D., Savinell, R. F., & Litt, M. (1995). Acid‐Doped Polybenzimidazoles: A New Polymer Electrolyte. Journal of The Electrochemical Society, 142(7), L121-L123. doi:10.1149/1.2044337 es_ES
dc.description.references Quartarone, E., & Mustarelli, P. (2012). Polymer fuel cells based on polybenzimidazole/H3PO4. Energy & Environmental Science, 5(4), 6436. doi:10.1039/c2ee03055a es_ES
dc.description.references Wang, L., Liu, Z., Ni, J., Xu, M., Pan, C., Wang, D., … Wang, L. (2019). Preparation and investigation of block polybenzimidazole membranes with high battery performance and low phosphoric acid doping for use in high-temperature fuel cells. Journal of Membrane Science, 572, 350-357. doi:10.1016/j.memsci.2018.10.083 es_ES
dc.description.references Wang, L., Liu, Z., Liu, Y., & Wang, L. (2019). Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells. Journal of Membrane Science, 583, 110-117. doi:10.1016/j.memsci.2019.04.030 es_ES
dc.description.references Hu, M., Li, T., Neelakandan, S., Wang, L., & Chen, Y. (2020). Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity. Journal of Membrane Science, 593, 117435. doi:10.1016/j.memsci.2019.117435 es_ES
dc.description.references Ni, J., Hu, M., Liu, D., Xie, H., Xiang, X., & Wang, L. (2016). Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells. Journal of Materials Chemistry C, 4(21), 4814-4821. doi:10.1039/c6tc00862c es_ES
dc.description.references Qingfeng, L., Hjuler, H. A., & Bjerrum, N. J. (2001). Journal of Applied Electrochemistry, 31(7), 773-779. doi:10.1023/a:1017558523354 es_ES
dc.description.references Samms, S. R., Wasmus, S., & Savinell, R. F. (1996). Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments. Journal of The Electrochemical Society, 143(4), 1225-1232. doi:10.1149/1.1836621 es_ES
dc.description.references Ghosh, S., Maity, S., & Jana, T. (2011). Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell. Journal of Materials Chemistry, 21(38), 14897. doi:10.1039/c1jm12169c es_ES
dc.description.references Escorihuela, García-Bernabé, Montero, Andrio, Sahuquillo, Giménez, & Compañ. (2019). Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers, 11(7), 1182. doi:10.3390/polym11071182 es_ES
dc.description.references Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f es_ES
dc.description.references Özdemir, Y., Üregen, N., & Devrim, Y. (2017). Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2648-2657. doi:10.1016/j.ijhydene.2016.04.132 es_ES
dc.description.references Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2636-2647. doi:10.1016/j.ijhydene.2016.07.009 es_ES
dc.description.references Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g es_ES
dc.description.references Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775 es_ES
dc.description.references Barjola, A., Escorihuela, J., Andrio, A., Giménez, E., & Compañ, V. (2018). Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials, 8(12), 1042. doi:10.3390/nano8121042 es_ES
dc.description.references Escorihuela, J., Narducci, R., Compañ, V., & Costantino, F. (2018). Proton Conductivity of Composite Polyelectrolyte Membranes with Metal‐Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 1801146. doi:10.1002/admi.201801146 es_ES
dc.description.references Liu, S., Zhou, L., Wang, P., Zhang, F., Yu, S., Shao, Z., & Yi, B. (2014). Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications. ACS Applied Materials & Interfaces, 6(5), 3195-3200. doi:10.1021/am404645c es_ES
dc.description.references Kallem, P., Eguizabal, A., Mallada, R., & Pina, M. P. (2016). Constructing Straight Polyionic Liquid Microchannels for Fast Anhydrous Proton Transport. ACS Applied Materials & Interfaces, 8(51), 35377-35389. doi:10.1021/acsami.6b13315 es_ES
dc.description.references Escorihuela, J., García-Bernabé, A., Montero, Á., Sahuquillo, Ó., Giménez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732 es_ES
dc.description.references Li, Z., He, G., Zhang, B., Cao, Y., Wu, H., Jiang, Z., & Tiantian, Z. (2014). Enhanced Proton Conductivity of Nafion Hybrid Membrane under Different Humidities by Incorporating Metal–Organic Frameworks With High Phytic Acid Loading. ACS Applied Materials & Interfaces, 6(12), 9799-9807. doi:10.1021/am502236v es_ES
dc.description.references Tanaka, M., Takeda, Y., Wakiya, T., Wakamoto, Y., Harigaya, K., Ito, T., … Kawakami, H. (2017). Acid-doped polymer nanofiber framework: Three-dimensional proton conductive network for high-performance fuel cells. Journal of Power Sources, 342, 125-134. doi:10.1016/j.jpowsour.2016.12.018 es_ES
dc.description.references Zeng, J., Zhou, Y., Li, L., & Jiang, S. P. (2011). Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Physical Chemistry Chemical Physics, 13(21), 10249. doi:10.1039/c1cp20076c es_ES
dc.description.references Zhou, Y., Yang, J., Su, H., Zeng, J., Jiang, S. P., & Goddard, W. A. (2014). Insight into Proton Transfer in Phosphotungstic Acid Functionalized Mesoporous Silica-Based Proton Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 136(13), 4954-4964. doi:10.1021/ja411268q es_ES
dc.description.references Zhai, & Li. (2019). Polyoxometalate–Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications. Molecules, 24(19), 3425. doi:10.3390/molecules24193425 es_ES
dc.description.references YUAN, J., ZHOU, G., & PU, H. (2008). Preparation and properties of Nafion®/hollow silica spheres composite membranes. Journal of Membrane Science, 325(2), 742-748. doi:10.1016/j.memsci.2008.08.050 es_ES
dc.description.references Zhang, X., Fu, X., Yang, S., Zhang, Y., Zhang, R., Hu, S., … Liu, Q. (2019). Design of sepiolite-supported ionogel-embedded composite membranes without proton carrier wastage for wide-temperature-range operation of proton exchange membrane fuel cells. Journal of Materials Chemistry A, 7(25), 15288-15301. doi:10.1039/c9ta03666k es_ES
dc.description.references Wang, S., Zhao, C., Ma, W., Zhang, G., Liu, Z., Ni, J., … Na, H. (2012). Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells. Journal of Membrane Science, 411-412, 54-63. doi:10.1016/j.memsci.2012.04.011 es_ES
dc.description.references Bose, S., Kuila, T., Nguyen, T. X. H., Kim, N. H., Lau, K., & Lee, J. H. (2011). Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Progress in Polymer Science, 36(6), 813-843. doi:10.1016/j.progpolymsci.2011.01.003 es_ES
dc.description.references Choi, S.-W., Park, J., Pak, C., Choi, K., Lee, J.-C., & Chang, H. (2013). Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(benzoxazine) and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell. Polymers, 5(1), 77-111. doi:10.3390/polym5010077 es_ES
dc.description.references Lu, Z., Lugo, M., Santare, M. H., Karlsson, A. M., Busby, F. C., & Walsh, P. (2012). An experimental investigation of strain rate, temperature and humidity effects on the mechanical behavior of a perfluorosulfonic acid membrane. Journal of Power Sources, 214, 130-136. doi:10.1016/j.jpowsour.2012.04.094 es_ES
dc.description.references Yang, J., Li, Q., Cleemann, L. N., Xu, C., Jensen, J. O., Pan, C., … He, R. (2012). Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. Journal of Materials Chemistry, 22(22), 11185. doi:10.1039/c2jm30217a es_ES
dc.description.references Kumar B., S., Sana, B., Unnikrishnan, G., Jana, T., & Kumar K. S., S. (2020). Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polymer Chemistry, 11(5), 1043-1054. doi:10.1039/c9py01403a es_ES
dc.description.references Li, Q., Pan, C., Jensen, J. O., Noyé, P., & Bjerrum, N. J. (2007). Cross-Linked Polybenzimidazole Membranes for Fuel Cells. Chemistry of Materials, 19(3), 350-352. doi:10.1021/cm0627793 es_ES
dc.description.references Gao, C., Hu, M., Wang, L., & Wang, L. (2020). Synthesis and Properties of Phosphoric-Acid-Doped Polybenzimidazole with Hyperbranched Cross-Linkers Decorated with Imidazolium Groups as High-Temperature Proton Exchange Membranes. Polymers, 12(3), 515. doi:10.3390/polym12030515 es_ES
dc.description.references Sacco, A. (2017). Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 79, 814-829. doi:10.1016/j.rser.2017.05.159 es_ES
dc.description.references Randviir, E. P., & Banks, C. E. (2013). Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Analytical Methods, 5(5), 1098. doi:10.1039/c3ay26476a es_ES
dc.description.references Gomadam, P. M., & Weidner, J. W. (2005). Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. International Journal of Energy Research, 29(12), 1133-1151. doi:10.1002/er.1144 es_ES
dc.description.references Nawn, G., Pace, G., Lavina, S., Vezzù, K., Negro, E., Bertasi, F., … Di Noto, V. (2014). Interplay between Composition, Structure, and Properties of New H3PO4-Doped PBI4N–HfO2 Nanocomposite Membranes for High-Temperature Proton Exchange Membrane Fuel Cells. Macromolecules, 48(1), 15-27. doi:10.1021/ma5018956 es_ES
dc.description.references Liu, F., Wang, S., Chen, H., Li, J., Tian, X., Wang, X., … Wang, Z. (2018). Cross-Linkable Polymeric Ionic Liquid Improve Phosphoric Acid Retention and Long-Term Conductivity Stability in Polybenzimidazole Based PEMs. ACS Sustainable Chemistry & Engineering, 6(12), 16352-16362. doi:10.1021/acssuschemeng.8b03419 es_ES
dc.description.references Vilčiauskas, L., Tuckerman, M. E., Bester, G., Paddison, S. J., & Kreuer, K.-D. (2012). The mechanism of proton conduction in phosphoric acid. Nature Chemistry, 4(6), 461-466. doi:10.1038/nchem.1329 es_ES
dc.description.references Bose, A. B., Gopu, S., & Li, W. (2014). Enhancement of proton exchange membrane fuel cells performance at elevated temperatures and lower humidities by incorporating immobilized phosphotungstic acid in electrodes. Journal of Power Sources, 263, 217-222. doi:10.1016/j.jpowsour.2014.04.043 es_ES
dc.description.references Crea, F., De Stefano, C., Milea, D., & Sammartano, S. (2008). Formation and stability of phytate complexes in solution. Coordination Chemistry Reviews, 252(10-11), 1108-1120. doi:10.1016/j.ccr.2007.09.008 es_ES
dc.description.references Lu, J. L., Fang, Q. H., Li, S. L., & Jiang, S. P. (2013). A novel phosphotungstic acid impregnated meso-Nafion multilayer membrane for proton exchange membrane fuel cells. Journal of Membrane Science, 427, 101-107. doi:10.1016/j.memsci.2012.09.041 es_ES
dc.description.references Wang, S., Sun, P., Li, Z., Liu, G., & Yin, X. (2018). Comprehensive performance enhancement of polybenzimidazole based high temperature proton exchange membranes by doping with a novel intercalated proton conductor. International Journal of Hydrogen Energy, 43(21), 9994-10003. doi:10.1016/j.ijhydene.2018.04.089 es_ES
dc.description.references Kim, A. R., Vinothkannan, M., Kim, J. S., & Yoo, D. J. (2017). Proton-conducting phosphotungstic acid/sulfonated fluorinated block copolymer composite membrane for polymer electrolyte fuel cells with reduced hydrogen permeability. Polymer Bulletin, 75(7), 2779-2804. doi:10.1007/s00289-017-2180-2 es_ES
dc.description.references Kim, A. R., Park, C. J., Vinothkannan, M., & Yoo, D. J. (2018). Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells. Composites Part B: Engineering, 155, 272-281. doi:10.1016/j.compositesb.2018.08.016 es_ES
dc.description.references Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j es_ES
dc.description.references Kreuer, K.-D., Rabenau, A., & Weppner, W. (1982). Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors. Angewandte Chemie International Edition in English, 21(3), 208-209. doi:10.1002/anie.198202082 es_ES
dc.description.references Xu, C., Cao, Y., Kumar, R., Wu, X., Wang, X., & Scott, K. (2011). A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 21(30), 11359. doi:10.1039/c1jm11159k es_ES
dc.description.references Rewar, A. S., Chaudhari, H. D., Illathvalappil, R., Sreekumar, K., & Kharul, U. K. (2014). New approach of blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical and electrochemical properties. Journal of Materials Chemistry A, 2(35), 14449. doi:10.1039/c4ta02184c es_ES
dc.description.references He, R. (2003). Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science, 226(1-2), 169-184. doi:10.1016/j.memsci.2003.09.002 es_ES
dc.description.references Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004 es_ES
dc.description.references Compañ, V., Smith So/rensen, T., Diaz‐Calleja, R., & Riande, E. (1996). Diffusion coefficients of conductive ions in a copolymer of vinylidene cyanide and vinyl acetate obtained from dielectric measurements using the model of Trukhan. Journal of Applied Physics, 79(1), 403-411. doi:10.1063/1.360844 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem