- -

Manufacturing and Properties of Binary Blend from Bacterial Polyester Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(caprolactone) with Improved Toughness

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Manufacturing and Properties of Binary Blend from Bacterial Polyester Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(caprolactone) with Improved Toughness

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ivorra-Martínez, Juan es_ES
dc.contributor.author Verdu, Isabel es_ES
dc.contributor.author Fenollar, Octavio es_ES
dc.contributor.author Sanchez-Nacher, Lourdes es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.date.accessioned 2021-03-01T08:09:29Z
dc.date.available 2021-03-01T08:09:29Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162589
dc.description.abstract [EN] Polyhydroxyalkanoates (PHAs) represent a promising group of bacterial polyesters for new applications. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) is a very promising bacterial polyester with potential uses in the packaging industry; nevertheless, as with many (almost all) bacterial polyesters, PHBH undergoes secondary crystallization (aging) which leads to an embrittlement. To overcome or minimize this, in the present work a flexible petroleum-derived polyester, namely poly(e-caprolactone), was used to obtain PHBH/PCL blends with different compositions (from 0 to 40 PCL wt %) using extrusion followed by injection moulding. The thermal analysis of the binary blends was studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TGA). Both TGA and DSC revealed immiscibility between PHBH and PCL. Mechanical dynamic thermal analysis (DMTA) allowed a precise determination of the glass transition temperatures (Tg) as a function of the blend composition. By means of field emission scanning electron microscopy (FESEM), an internal structure formed by two phases was observed, with a PHBH-rich matrix phase and a finely dispersed PCL-rich phase. These results confirmed the immiscibility between these two biopolymers. However, the mechanical properties obtained through tensile and Charpy tests, indicated that the addition of PCL to PHBH considerably improved toughness. PHBH/PCL blends containing 40 PCL wt % offered an impact resistance double that of neat PHBH. PCL addition also contributed to a decrease in brittleness and an improvement in toughness and some other ductile properties. As expected, an increase in ductile properties resulted in a decrease in some mechanical resistant properties, e.g., the modulus and the strength (in tensile and flexural conditions) decreased with increasing wt % PCL in PHBH/PCL blends. es_ES
dc.description.sponsorship This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU), project numbers MAT2017-84909-C2-2-R. This work was supported by the POLISABIO program, grant number (2019-A02). Juan Ivorra-Martinez is the recipient of an FPI grant from Universitat Politècnica de València (PAID-2019-SP20190011). Luis Quiles-Carrillo wants to thank GVA for his FPI grant (ACIF/2016/182) and MECD for his FPU grant (FPU15/03812). Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bacterial polyesters es_ES
dc.subject Poly(3-hydroxybutyrate-co-3hydroxyhexanoate)-PHBH es_ES
dc.subject Poly(e-caprolactone)-PCL es_ES
dc.subject Binary blends es_ES
dc.subject Improved toughness es_ES
dc.subject Mechanical and thermal characterization es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Manufacturing and Properties of Binary Blend from Bacterial Polyester Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(caprolactone) with Improved Toughness es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12051118 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-2019-SP20190011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPV-FISABIO-2019-A02/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Ivorra-Martínez, J.; Verdu, I.; Fenollar, O.; Sanchez-Nacher, L.; Balart, R.; Quiles-Carrillo, L. (2020). Manufacturing and Properties of Binary Blend from Bacterial Polyester Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(caprolactone) with Improved Toughness. Polymers. 12(5):1-20. https://doi.org/10.3390/polym12051118 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym12051118 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 32422915 es_ES
dc.identifier.pmcid PMC7285169 es_ES
dc.relation.pasarela S\413131 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana es_ES
dc.description.references Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2 es_ES
dc.description.references Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043 es_ES
dc.description.references Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 es_ES
dc.description.references Wong, J. X., Ogura, K., Chen, S., & Rehm, B. H. A. (2020). Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Frontiers in Bioengineering and Biotechnology, 8. doi:10.3389/fbioe.2020.00156 es_ES
dc.description.references Dang, K. M., & Yoksan, R. (2015). Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575-581. doi:10.1016/j.carbpol.2014.09.005 es_ES
dc.description.references Carter, P., Rahman, S. M., & Bhattarai, N. (2016). Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application. Journal of Biomaterials Science, Polymer Edition, 27(7), 692-708. doi:10.1080/09205063.2016.1152857 es_ES
dc.description.references Zhang, W., Xiang, Y., Fan, H., Wang, L., Xie, Y., Zhao, G., & Liu, Y. (2020). Biodegradable Urea–Formaldehyde/PBS and Its Ternary Nanocomposite Prepared by a Novel and Scalable Reactive Extrusion Process for Slow-Release Applications in Agriculture. Journal of Agricultural and Food Chemistry, 68(16), 4595-4606. doi:10.1021/acs.jafc.0c00638 es_ES
dc.description.references Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027 es_ES
dc.description.references Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008 es_ES
dc.description.references Mukherjee, T., & Kao, N. (2011). PLA Based Biopolymer Reinforced with Natural Fibre: A Review. Journal of Polymers and the Environment, 19(3), 714-725. doi:10.1007/s10924-011-0320-6 es_ES
dc.description.references Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326 es_ES
dc.description.references Pilania, G., Iverson, C. N., Lookman, T., & Marrone, B. L. (2019). Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers. Journal of Chemical Information and Modeling, 59(12), 5013-5025. doi:10.1021/acs.jcim.9b00807 es_ES
dc.description.references Asrar, J., Valentin, H. E., Berger, P. A., Tran, M., Padgette, S. R., & Garbow, J. R. (2002). Biosynthesis and Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Polymers. Biomacromolecules, 3(5), 1006-1012. doi:10.1021/bm025543a es_ES
dc.description.references Misra, S. K., Valappil, S. P., Roy, I., & Boccaccini, A. R. (2006). Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications. Biomacromolecules, 7(8), 2249-2258. doi:10.1021/bm060317c es_ES
dc.description.references Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057 es_ES
dc.description.references Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002 es_ES
dc.description.references Alata, H., Aoyama, T., & Inoue, Y. (2007). Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 40(13), 4546-4551. doi:10.1021/ma070418i es_ES
dc.description.references Mahmood, H., Pegoretti, A., Brusa, R. S., Ceccato, R., Penasa, L., Tarter, S., & Checchetto, R. (2020). Molecular transport through 3-hydroxybutyrate co-3-hydroxyhexanoate biopolymer films with dispersed graphene oxide nanoparticles: Gas barrier, structural and mechanical properties. Polymer Testing, 81, 106181. doi:10.1016/j.polymertesting.2019.106181 es_ES
dc.description.references Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330 es_ES
dc.description.references Hu, Y., Zhang, J., Sato, H., Noda, I., & Ozaki, Y. (2007). Multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy. Polymer, 48(16), 4777-4785. doi:10.1016/j.polymer.2007.06.016 es_ES
dc.description.references Sharma, P., Munir, R., Blunt, W., Dartiailh, C., Cheng, J., Charles, T., & Levin, D. (2017). Synthesis and Physical Properties of Polyhydroxyalkanoate Polymers with Different Monomer Compositions by Recombinant Pseudomonas putida LS46 Expressing a Novel PHA SYNTHASE (PhaC116) Enzyme. Applied Sciences, 7(3), 242. doi:10.3390/app7030242 es_ES
dc.description.references Watanabe, T., He, Y., Fukuchi, T., & Inoue, Y. (2001). Comonomer Compositional Distribution and Thermal Characteristics of Bacterially Synthesized Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s. Macromolecular Bioscience, 1(2), 75-83. doi:10.1002/1616-5195(20010301)1:2<75::aid-mabi75>3.0.co;2-q es_ES
dc.description.references Morgan-Sagastume, F., Valentino, F., Hjort, M., Cirne, D., Karabegovic, L., Gerardin, F., … Werker, A. (2013). Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Science and Technology, 69(1), 177-184. doi:10.2166/wst.2013.643 es_ES
dc.description.references Sato, H., Nakamura, M., Padermshoke, A., Yamaguchi, H., Terauchi, H., Ekgasit, S., … Ozaki, Y. (2004). Thermal Behavior and Molecular Interaction of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Studied by Wide-Angle X-ray Diffraction. Macromolecules, 37(10), 3763-3769. doi:10.1021/ma049863t es_ES
dc.description.references Oyama, T., Kobayashi, S., Okura, T., Sato, S., Tajima, K., Isono, T., & Satoh, T. (2019). Biodegradable Compatibilizers for Poly(hydroxyalkanoate)/Poly(ε-caprolactone) Blends through Click Reactions with End-Functionalized Microbial Poly(hydroxyalkanoate)s. ACS Sustainable Chemistry & Engineering, 7(8), 7969-7978. doi:10.1021/acssuschemeng.9b00897 es_ES
dc.description.references Xu, P., Cao, Y., Lv, P., Ma, P., Dong, W., Bai, H., … Chen, M. (2018). Enhanced crystallization kinetics of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanate) with structural optimization of oxalamide compounds as nucleators. Polymer Degradation and Stability, 154, 170-176. doi:10.1016/j.polymdegradstab.2018.06.001 es_ES
dc.description.references Fenollar, O., Sanchez-Nacher, L., Garcia-Sanoguera, D., López, J., & Balart, R. (2009). The effect of the curing time and temperature on final properties of flexible PVC with an epoxidized fatty acid ester as natural-based plasticizer. Journal of Materials Science, 44(14), 3702-3711. doi:10.1007/s10853-009-3495-7 es_ES
dc.description.references Gassner, F., & Owen, A. J. (1994). Physical properties of poly(β-hydroxybutyrate)-poly(ε-caprolactone) blends. Polymer, 35(10), 2233-2236. doi:10.1016/0032-3861(94)90258-5 es_ES
dc.description.references Garcia-Garcia, D., Ferri, J. M., Boronat, T., Lopez-Martinez, J., & Balart, R. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin, 73(12), 3333-3350. doi:10.1007/s00289-016-1659-6 es_ES
dc.description.references Garcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2018). Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487-498. doi:10.1016/j.clay.2018.06.042 es_ES
dc.description.references Garcia-Garcia, D., Lopez-Martinez, J., Balart, R., Strömberg, E., & Moriana, R. (2018). Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) thermoplastic blend. European Polymer Journal, 104, 10-18. doi:10.1016/j.eurpolymj.2018.04.036 es_ES
dc.description.references Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339 es_ES
dc.description.references Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079 es_ES
dc.description.references Arifin, W., & Kuboki, T. (2016). Effects of thermoplastic elastomers on mechanical and thermal properties of glass fiber reinforced poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composites. Polymer Composites, 39(S3), E1331-E1345. doi:10.1002/pc.24188 es_ES
dc.description.references Simões, C. L., Viana, J. C., & Cunha, A. M. (2009). Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends. Journal of Applied Polymer Science, 112(1), 345-352. doi:10.1002/app.29425 es_ES
dc.description.references Katsumata, K., Saito, T., Yu, F., Nakamura, N., & Inoue, Y. (2011). The toughening effect of a small amount of poly(ɛ-caprolactone) on the mechanical properties of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/PCL blend. Polymer Journal, 43(5), 484-492. doi:10.1038/pj.2011.12 es_ES
dc.description.references Antunes, M. C. M., & Felisberti, M. I. (2005). [NO TITLE AVAILABLE]. Polímeros, 15(2), 134-138. doi:10.1590/s0104-14282005000200014 es_ES
dc.description.references Przybysz, M., Marć, M., Klein, M., Saeb, M. R., & Formela, K. (2018). Structural, mechanical and thermal behavior assessments of PCL/PHB blends reactively compatibilized with organic peroxides. Polymer Testing, 67, 513-521. doi:10.1016/j.polymertesting.2018.03.014 es_ES
dc.description.references Garcia, D., Balart, R., Sánchez, L., & López, J. (2007). Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polymer Engineering & Science, 47(6), 789-796. doi:10.1002/pen.20755 es_ES
dc.description.references Ding, C., Cheng, B., & Wu, Q. (2010). DSC analysis of isothermally melt-crystallized bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films. Journal of Thermal Analysis and Calorimetry, 103(3), 1001-1006. doi:10.1007/s10973-010-1135-8 es_ES
dc.description.references Hosoda, N., Tsujimoto, T., & Uyama, H. (2013). Green Composite of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Reinforced with Porous Cellulose. ACS Sustainable Chemistry & Engineering, 2(2), 248-253. doi:10.1021/sc400290y es_ES
dc.description.references Burgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2013). Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic Acid) Plasticizers. Journal of Polymers and the Environment, 22(2), 227-235. doi:10.1007/s10924-013-0628-5 es_ES
dc.description.references Avolio, R., Castaldo, R., Gentile, G., Ambrogi, V., Fiori, S., Avella, M., … Errico, M. E. (2015). Plasticization of poly(lactic acid) through blending with oligomers of lactic acid: Effect of the physical aging on properties. European Polymer Journal, 66, 533-542. doi:10.1016/j.eurpolymj.2015.02.040 es_ES
dc.description.references Hinuber, C., Haussler, L., Vogel, R., Brunig, H., Heinrich, G., & Werner, C. (2011). Hollow fibers made from a poly(3-hydroxybutyrate)/poly-ε-caprolactone blend. Express Polymer Letters, 5(7), 643-652. doi:10.3144/expresspolymlett.2011.62 es_ES
dc.description.references Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751 es_ES
dc.description.references Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem