- -

Recent Applications of Biphotonic Processes to Organic Synthesis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent Applications of Biphotonic Processes to Organic Synthesis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castellanos-Soriano, Jorge es_ES
dc.contributor.author Herrera-Luna, Jorge Carlos es_ES
dc.contributor.author Díaz Díaz, David es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.contributor.author Pérez-Ruiz, Raúl es_ES
dc.date.accessioned 2021-03-01T08:10:23Z
dc.date.available 2021-03-01T08:10:23Z
dc.date.issued 2020-07-07 es_ES
dc.identifier.issn 2052-4110 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162607
dc.description.abstract [EN] Currently, evolution of chemical transformations by visible light irradiation is highly desirable from cost, safety, availability, and environmental friendliness points of view. Besides, activation of less reactive substrates under very mild conditions becomes one of the most challenging tasks in organic synthesis. However, the insufficient energy provided by one photon of visible light for their activation definitely makes necessary the development of new protocols together with the design of new photocatalytic systems to overcome this limitation. In this context, the implementation of biphotonic processes has been found to be a solution for these drawbacks. This new mechanistic paradigm which combines light upconversion processes with energy/electron transfers holds great potential for high energy demanding bond activations, expanding the accessible reactivity window. Here, we wish to highlight the recent applications of biphotonic processes in organic synthesis. es_ES
dc.description.sponsorship Financial support from the Generalitat Valenciana (CIDEGENT/2018/044) and the Spanish Government (CTQ2016-78875-P, BES-2017-080215 and BEAGAL18/00166) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Organic Chemistry Frontiers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Recent Applications of Biphotonic Processes to Organic Synthesis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/D0QO00466A es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//BEAGAL18%2F00166/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2017-080215/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F044/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Castellanos-Soriano, J.; Herrera-Luna, JC.; Díaz Díaz, D.; Jiménez Molero, MC.; Pérez-Ruiz, R. (2020). Recent Applications of Biphotonic Processes to Organic Synthesis. Organic Chemistry Frontiers. 7(13):1709-1716. https://doi.org/10.1039/D0QO00466A es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/D0QO00466A es_ES
dc.description.upvformatpinicio 1709 es_ES
dc.description.upvformatpfin 1716 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 13 es_ES
dc.relation.pasarela S\413406 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Scholes, G. D., Fleming, G. R., Olaya-Castro, A., & van Grondelle, R. (2011). Lessons from nature about solar light harvesting. Nature Chemistry, 3(10), 763-774. doi:10.1038/nchem.1145 es_ES
dc.description.references Scholes, G. D., Mirkovic, T., Turner, D. B., Fassioli, F., & Buchleitner, A. (2012). Solar light harvesting by energy transfer: from ecology to coherence. Energy & Environmental Science, 5(11), 9374. doi:10.1039/c2ee23013e es_ES
dc.description.references Demmig-Adams, B., Stewart, J. J., Burch, T. A., & Adams, W. W. (2014). Insights from Placing Photosynthetic Light Harvesting into Context. The Journal of Physical Chemistry Letters, 5(16), 2880-2889. doi:10.1021/jz5010768 es_ES
dc.description.references Balzani, V., Bergamini, G., & Ceroni, P. (2015). Light: A Very Peculiar Reactant and Product. Angewandte Chemie International Edition, 54(39), 11320-11337. doi:10.1002/anie.201502325 es_ES
dc.description.references Hoffmann, N. (2008). Photochemical Reactions as Key Steps in Organic Synthesis. Chemical Reviews, 108(3), 1052-1103. doi:10.1021/cr0680336 es_ES
dc.description.references N. J. Turro , V.Ramamurthy and J. C.Scaiano , Modern Molecular Photochemistry of Organic Molecules , University Science Books , Sausalito, CA , 2010 , p. 1084 es_ES
dc.description.references A. G. Griesbeck , M.Oelgemöller and F.Ghetti , CRC Handbook of Organic Photochemistry and Photobiology , CRC Press , Boca Raton, FL , 3rd edn, 2012 , p. 1694 es_ES
dc.description.references A. Albini and M.Fagnoni , Handbook of Synthetic Photochemistry , Wiley-VCH , Weinheim , 2009 , p. 463 es_ES
dc.description.references M. Montaldi , A.Credi , L.Prodi and T. M.Gandolfi , CRC Handbook of Photochemistry , CRC Press , Boca Raton, FL , 3rd edn, 2006 , p. 664 es_ES
dc.description.references A. G. Griesbeck and J.Mattay , Synthetic Organic Photochemistry , Marcel Dekker , New York , 2005 , p. 648 es_ES
dc.description.references Hossain, A., Bhattacharyya, A., & Reiser, O. (2019). Copper’s rapid ascent in visible-light photoredox catalysis. Science, 364(6439). doi:10.1126/science.aav9713 es_ES
dc.description.references Zhou, Q., Zou, Y., Lu, L., & Xiao, W. (2018). Visible‐Light‐Induced Organic Photochemical Reactions through Energy‐Transfer Pathways. Angewandte Chemie International Edition, 58(6), 1586-1604. doi:10.1002/anie.201803102 es_ES
dc.description.references Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L., & Glorius, F. (2018). Energy transfer catalysis mediated by visible light: principles, applications, directions. Chemical Society Reviews, 47(19), 7190-7202. doi:10.1039/c8cs00054a es_ES
dc.description.references Twilton, J., Le, C., Zhang, P., Shaw, M. H., Evans, R. W., & MacMillan, D. W. C. (2017). The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 1(7). doi:10.1038/s41570-017-0052 es_ES
dc.description.references Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057 es_ES
dc.description.references Skubi, K. L., Blum, T. R., & Yoon, T. P. (2016). Dual Catalysis Strategies in Photochemical Synthesis. Chemical Reviews, 116(17), 10035-10074. doi:10.1021/acs.chemrev.6b00018 es_ES
dc.description.references Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r es_ES
dc.description.references Schultz, D. M., & Yoon, T. P. (2014). Solar Synthesis: Prospects in Visible Light Photocatalysis. Science, 343(6174). doi:10.1126/science.1239176 es_ES
dc.description.references Zhang, M., Lin, Y., Mullen, T. J., Lin, W., Sun, L.-D., Yan, C.-H., … Liu, G. (2012). Improving Hematite’s Solar Water Splitting Efficiency by Incorporating Rare-Earth Upconversion Nanomaterials. The Journal of Physical Chemistry Letters, 3(21), 3188-3192. doi:10.1021/jz301444a es_ES
dc.description.references Gonell, F., Haro, M., Sánchez, R. S., Negro, P., Mora-Seró, I., Bisquert, J., … Gimenez, S. (2014). Photon Up-Conversion with Lanthanide-Doped Oxide Particles for Solar H2 Generation. The Journal of Physical Chemistry C, 118(21), 11279-11284. doi:10.1021/jp503743e es_ES
dc.description.references Ye, C., Zhou, L., Wang, X., & Liang, Z. (2016). Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA). Physical Chemistry Chemical Physics, 18(16), 10818-10835. doi:10.1039/c5cp07296d es_ES
dc.description.references Sun, Q.-C., Ding, Y. C., Sagar, D. M., & Nagpal, P. (2017). Photon upconversion towards applications in energy conversion and bioimaging. Progress in Surface Science, 92(4), 281-316. doi:10.1016/j.progsurf.2017.09.003 es_ES
dc.description.references Frazer, L., Gallaher, J. K., & Schmidt, T. W. (2017). Optimizing the Efficiency of Solar Photon Upconversion. ACS Energy Letters, 2(6), 1346-1354. doi:10.1021/acsenergylett.7b00237 es_ES
dc.description.references Gulzar, A., Xu, J., Yang, P., He, F., & Xu, L. (2017). Upconversion processes: versatile biological applications and biosafety. Nanoscale, 9(34), 12248-12282. doi:10.1039/c7nr01836c es_ES
dc.description.references Nanda, K. D., & Krylov, A. I. (2017). Visualizing the Contributions of Virtual States to Two-Photon Absorption Cross Sections by Natural Transition Orbitals of Response Transition Density Matrices. The Journal of Physical Chemistry Letters, 8(14), 3256-3265. doi:10.1021/acs.jpclett.7b01422 es_ES
dc.description.references Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Yamaji, M., Lhiaubet-Vallet, V., Cuquerella, M. C., & Miranda, M. A. (2013). Two-Photon Chemistry from Upper Triplet States of Thymine. Journal of the American Chemical Society, 135(44), 16714-16719. doi:10.1021/ja408997j es_ES
dc.description.references Alzueta, O. R., Cadet, J., Cuquerella, M. C., & Miranda, M. A. (2020). Photosensitised biphotonic chemistry of pyrimidine derivatives. Organic & Biomolecular Chemistry, 18(12), 2227-2232. doi:10.1039/d0ob00132e es_ES
dc.description.references Zheng, Y.-C., Zheng, M.-L., Li, K., Chen, S., Zhao, Z.-S., Wang, X.-S., & Duan, X.-M. (2015). Novel carbazole-based two-photon photosensitizer for efficient DNA photocleavage in anaerobic condition using near-infrared light. RSC Advances, 5(1), 770-774. doi:10.1039/c4ra11133h es_ES
dc.description.references Gattuso, H., Dumont, E., Marazzi, M., & Monari, A. (2016). Two-photon-absorption DNA sensitization via solvated electron production: unraveling photochemical pathways by molecular modeling and simulation. Physical Chemistry Chemical Physics, 18(27), 18598-18606. doi:10.1039/c6cp02592g es_ES
dc.description.references Kerzig, C., & Wenger, O. S. (2019). Reactivity control of a photocatalytic system by changing the light intensity. Chemical Science, 10(48), 11023-11029. doi:10.1039/c9sc04584h es_ES
dc.description.references Yamaji, M., Suwa, Y., Shimokawa, R., Paris, C., & Miranda, M. Á. (2015). Photochemical reactions of halogenated aromatic 1,3-diketones in solution studied by steady state, one- and two-color laser flash photolyses. Photochemical & Photobiological Sciences, 14(9), 1673-1684. doi:10.1039/c5pp00211g es_ES
dc.description.references Hennig, A.-L. K., Deodato, D., Asad, N., Herbivo, C., & Dore, T. M. (2019). Two-Photon Excitable Photoremovable Protecting Groups Based on the Quinoline Scaffold for Use in Biology. The Journal of Organic Chemistry, 85(2), 726-744. doi:10.1021/acs.joc.9b02780 es_ES
dc.description.references Gertsen, A. S., Koerstz, M., & Mikkelsen, K. V. (2018). Benchmarking triplet–triplet annihilation photon upconversion schemes. Physical Chemistry Chemical Physics, 20(17), 12182-12192. doi:10.1039/c8cp00588e es_ES
dc.description.references Barawi, M., Fresno, F., Pérez-Ruiz, R., & de la Peña O’Shea, V. A. (2018). Photoelectrochemical Hydrogen Evolution Driven by Visible-to-Ultraviolet Photon Upconversion. ACS Applied Energy Materials, 2(1), 207-211. doi:10.1021/acsaem.8b01916 es_ES
dc.description.references Yanai, N., & Kimizuka, N. (2017). New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption. Accounts of Chemical Research, 50(10), 2487-2495. doi:10.1021/acs.accounts.7b00235 es_ES
dc.description.references Schulze, T. F., & Schmidt, T. W. (2015). Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy & Environmental Science, 8(1), 103-125. doi:10.1039/c4ee02481h es_ES
dc.description.references Zhou, J., Liu, Q., Feng, W., Sun, Y., & Li, F. (2014). Upconversion Luminescent Materials: Advances and Applications. Chemical Reviews, 115(1), 395-465. doi:10.1021/cr400478f es_ES
dc.description.references Chen, G., Qiu, H., Prasad, P. N., & Chen, X. (2014). Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chemical Reviews, 114(10), 5161-5214. doi:10.1021/cr400425h es_ES
dc.description.references Schmidt, T. W., & Castellano, F. N. (2014). Photochemical Upconversion: The Primacy of Kinetics. The Journal of Physical Chemistry Letters, 5(22), 4062-4072. doi:10.1021/jz501799m es_ES
dc.description.references McCusker, C. E., & Castellano, F. N. (2013). Orange-to-blue and red-to-green photon upconversion with a broadband absorbing copper(i) MLCT sensitizer. Chemical Communications, 49(34), 3537. doi:10.1039/c3cc40778k es_ES
dc.description.references Börjesson, K., Dzebo, D., Albinsson, B., & Moth-Poulsen, K. (2013). Photon upconversion facilitated molecular solar energy storage. Journal of Materials Chemistry A, 1(30), 8521. doi:10.1039/c3ta12002c es_ES
dc.description.references Guo, S., Wu, W., Guo, H., & Zhao, J. (2012). Room-Temperature Long-Lived Triplet Excited States of Naphthalenediimides and Their Applications as Organic Triplet Photosensitizers for Photooxidation and Triplet–Triplet Annihilation Upconversions. The Journal of Organic Chemistry, 77(8), 3933-3943. doi:10.1021/jo3003002 es_ES
dc.description.references Gallavardin, T., Armagnat, C., Maury, O., Baldeck, P. L., Lindgren, M., Monnereau, C., & Andraud, C. (2012). An improved singlet oxygen sensitizer with two-photon absorption and emission in the biological transparency window as a result of ground state symmetry-breaking. Chem. Commun., 48(11), 1689-1691. doi:10.1039/c2cc15904j es_ES
dc.description.references Khnayzer, R. S., Blumhoff, J., Harrington, J. A., Haefele, A., Deng, F., & Castellano, F. N. (2012). Upconversion-powered photoelectrochemistry. Chem. Commun., 48(2), 209-211. doi:10.1039/c1cc16015j es_ES
dc.description.references Zhao, J., Ji, S., & Guo, H. (2011). Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Advances, 1(6), 937. doi:10.1039/c1ra00469g es_ES
dc.description.references Majek, M., Faltermeier, U., Dick, B., Pérez-Ruiz, R., & Jacobi von Wangelin, A. (2015). Application of Visible-to-UV Photon Upconversion to Photoredox Catalysis: The Activation of Aryl Bromides. Chemistry - A European Journal, 21(44), 15496-15501. doi:10.1002/chem.201502698 es_ES
dc.description.references Häring, M., Pérez-Ruiz, R., Jacobi von Wangelin, A., & Díaz, D. D. (2015). Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chemical Communications, 51(94), 16848-16851. doi:10.1039/c5cc06917c es_ES
dc.description.references López-Calixto, C. G., Liras, M., de la Peña O’Shea, V. A., & Pérez-Ruiz, R. (2018). Synchronized biphotonic process triggering C C coupling catalytic reactions. Applied Catalysis B: Environmental, 237, 18-23. doi:10.1016/j.apcatb.2018.05.062 es_ES
dc.description.references Ravetz, B. D., Pun, A. B., Churchill, E. M., Congreve, D. N., Rovis, T., & Campos, L. M. (2019). Photoredox catalysis using infrared light via triplet fusion upconversion. Nature, 565(7739), 343-346. doi:10.1038/s41586-018-0835-2 es_ES
dc.description.references Tokunaga, A., Uriarte, L. M., Mutoh, K., Fron, E., Hofkens, J., Sliwa, M., & Abe, J. (2019). Photochromic Reaction by Red Light via Triplet Fusion Upconversion. Journal of the American Chemical Society, 141(44), 17744-17753. doi:10.1021/jacs.9b08219 es_ES
dc.description.references El Roz, K. A., & Castellano, F. N. (2017). Photochemical upconversion in water. Chem. Commun., 53(85), 11705-11708. doi:10.1039/c7cc07188d es_ES
dc.description.references Xu, W., Liang, W., Wu, W., Fan, C., Rao, M., Su, D., … Yang, C. (2018). Supramolecular Assembly-Improved Triplet-Triplet Annihilation Upconversion in Aqueous Solution. Chemistry - A European Journal, 24(62), 16677-16685. doi:10.1002/chem.201804001 es_ES
dc.description.references Kouno, H., Sasaki, Y., Yanai, N., & Kimizuka, N. (2019). Supramolecular Crowding Can Avoid Oxygen Quenching of Photon Upconversion in Water. Chemistry – A European Journal, 25(24), 6124-6130. doi:10.1002/chem.201806076 es_ES
dc.description.references Kerzig, C., & Wenger, O. S. (2018). Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations. Chemical Science, 9(32), 6670-6678. doi:10.1039/c8sc01829d es_ES
dc.description.references Ghosh, I., Ghosh, T., Bardagi, J. I., & König, B. (2014). Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science, 346(6210), 725-728. doi:10.1126/science.1258232 es_ES
dc.description.references Zeng, L., Liu, T., He, C., Shi, D., Zhang, F., & Duan, C. (2016). Organized Aggregation Makes Insoluble Perylene Diimide Efficient for the Reduction of Aryl Halides via Consecutive Visible Light-Induced Electron-Transfer Processes. Journal of the American Chemical Society, 138(12), 3958-3961. doi:10.1021/jacs.5b12931 es_ES
dc.description.references He, J., Li, J., Han, Q., Si, C., Niu, G., Li, M., … Niu, J. (2019). Photoactive Metal–Organic Framework for the Reduction of Aryl Halides by the Synergistic Effect of Consecutive Photoinduced Electron-Transfer and Hydrogen-Atom-Transfer Processes. ACS Applied Materials & Interfaces, 12(2), 2199-2206. doi:10.1021/acsami.9b13538 es_ES
dc.description.references Marchini, M., Gualandi, A., Mengozzi, L., Franchi, P., Lucarini, M., Cozzi, P. G., … Ceroni, P. (2018). Mechanistic insights into two-photon-driven photocatalysis in organic synthesis. Physical Chemistry Chemical Physics, 20(12), 8071-8076. doi:10.1039/c7cp08011e es_ES
dc.description.references Bardagi, J. I., Ghosh, I., Schmalzbauer, M., Ghosh, T., & König, B. (2017). Anthraquinones as Photoredox Catalysts for the Reductive Activation of Aryl Halides. European Journal of Organic Chemistry, 2018(1), 34-40. doi:10.1002/ejoc.201701461 es_ES
dc.description.references Ghosh, I., & König, B. (2016). Chromoselective Photocatalysis: Controlled Bond Activation through Light-Color Regulation of Redox Potentials. Angewandte Chemie International Edition, 55(27), 7676-7679. doi:10.1002/anie.201602349 es_ES
dc.description.references Das, A., Ghosh, I., & König, B. (2016). Synthesis of pyrrolo[1,2-a]quinolines and ullazines by visible light mediated one- and twofold annulation of N-arylpyrroles with arylalkynes. Chemical Communications, 52(56), 8695-8698. doi:10.1039/c6cc04366f es_ES
dc.description.references Marzo, L., Ghosh, I., Esteban, F., & König, B. (2016). Metal-Free Photocatalyzed Cross Coupling of Bromoheteroarenes with Pyrroles. ACS Catalysis, 6(10), 6780-6784. doi:10.1021/acscatal.6b01452 es_ES
dc.description.references Shaikh, R. S., Düsel, S. J. S., & König, B. (2016). Visible-Light Photo-Arbuzov Reaction of Aryl Bromides and Trialkyl Phosphites Yielding Aryl Phosphonates. ACS Catalysis, 6(12), 8410-8414. doi:10.1021/acscatal.6b02591 es_ES
dc.description.references Graml, A., Ghosh, I., & König, B. (2017). Synthesis of Arylated Nucleobases by Visible Light Photoredox Catalysis. The Journal of Organic Chemistry, 82(7), 3552-3560. doi:10.1021/acs.joc.7b00088 es_ES
dc.description.references Meyer, A. U., Slanina, T., Heckel, A., & König, B. (2017). Lanthanide Ions Coupled with Photoinduced Electron Transfer Generate Strong Reduction Potentials from Visible Light. Chemistry - A European Journal, 23(33), 7900-7904. doi:10.1002/chem.201701665 es_ES
dc.description.references Häring, M., Abramov, A., Okumura, K., Ghosh, I., König, B., Yanai, N., … Díaz Díaz, D. (2018). Air-Sensitive Photoredox Catalysis Performed under Aerobic Conditions in Gel Networks. The Journal of Organic Chemistry, 83(15), 7928-7938. doi:10.1021/acs.joc.8b00797 es_ES
dc.description.references Haimerl, J. M., Ghosh, I., König, B., Lupton, J. M., & Vogelsang, J. (2018). Chemical Photocatalysis with Rhodamine 6G: Investigation of Photoreduction by Simultaneous Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Measurements. The Journal of Physical Chemistry B, 122(47), 10728-10735. doi:10.1021/acs.jpcb.8b08615 es_ES
dc.description.references Brandl, F., Bergwinkl, S., Allacher, C., & Dick, B. (2020). Consecutive Photoinduced Electron Transfer (conPET): The Mechanism of the Photocatalyst Rhodamine 6G. Chemistry – A European Journal, 26(35), 7946-7954. doi:10.1002/chem.201905167 es_ES
dc.description.references Eriksen, J., Lund, H., Nyvad, A. I., Yamato, T., Mitchell, R. H., Dingle, T. W., … Mahedevan, R. (1983). Electron-transfer Fluorescence Quenching of Radical Ions. Acta Chemica Scandinavica, 37b, 459-466. doi:10.3891/acta.chem.scand.37b-0459 es_ES
dc.description.references Fujita, M., Ishida, A., Majima, T., & Takamuku, S. (1996). Lifetimes of Radical Anions of Dicyanoanthracene, Phenazine, and Anthraquinone in the Excited State from the Selective Electron-Transfer Quenching. The Journal of Physical Chemistry, 100(13), 5382-5387. doi:10.1021/jp953203w es_ES
dc.description.references T. Shida , Electronic Absorption Spectra of Radical Ions , Elsevier , Amsterdam , 1988 , pp. 246 es_ES
dc.description.references Neumeier, M., Sampedro, D., Májek, M., de la Peña O’Shea, V. A., Jacobi von Wangelin, A., & Pérez-Ruiz, R. (2017). Dichromatic Photocatalytic Substitutions of Aryl Halides with a Small Organic Dye. Chemistry - A European Journal, 24(1), 105-108. doi:10.1002/chem.201705326 es_ES
dc.description.references Ciamician, G. (1912). The Photochemistry of the Future. Science, 36(926), 385-394. doi:10.1126/science.36.926.385 es_ES
dc.description.references Gust, D., Moore, T. A., & Moore, A. L. (1998). Mimicking bacterial photosynthesis. Pure and Applied Chemistry, 70(11), 2189-2200. doi:10.1351/pac199870112189 es_ES
dc.description.references Braslavsky, S. E. (2007). Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure and Applied Chemistry, 79(3), 293-465. doi:10.1351/pac200779030293 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem