- -

Using grey clustering to evaluate nitrogen pollution in estuaries with limited data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using grey clustering to evaluate nitrogen pollution in estuaries with limited data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Temino-Boes, Regina es_ES
dc.contributor.author Romero-Lopez, Rabindranarth es_ES
dc.contributor.author Ibarra-Zavaleta, Sara Patricia es_ES
dc.contributor.author Romero Gil, Inmaculada es_ES
dc.date.accessioned 2021-03-02T04:31:23Z
dc.date.available 2021-03-02T04:31:23Z
dc.date.issued 2020-06-20 es_ES
dc.identifier.issn 0048-9697 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162637
dc.description.abstract [EN] Many techniques exist for the evaluation of nutrient pollution, but most of them require large amounts of data and are difficult to implement in countries where accurate water quality information is not available. New methods tomanage subjectivity, inaccuracy or variability are required in such environments so that watermanagers can invest the scarce economic resources available to restore themost vulnerable areas. We propose a new methodology based on grey clusteringwhich classifies monitoring sites according to their need for nitrogen pollution management when only small amounts of data are available. Grey clustering focuses on the extraction of information with small samples, allowing management decision making with limited data. We applied the entropy-weight method, based on the concept of information entropy, to determine the clustering weight of each criterion used for classification. In order to reference the pollution level to the anthropogenic pressure, we developed two grey indexes: the Grey Nitrogen Management Priority index (GNMP index) to evaluate the relative need for nitrogen pollution management based on a spatiotemporal analysis of total nitrogen concentrations, and the Grey Land Use Pollution index (GLUP index), which evaluates the anthropogenic pressures of nitrogen pollution based on land use. Both indexes were then confronted to validate the classification. We applied the developedmethodology to eight estuaries of the SouthernGulf ofMexico associated to beaches,mangroves and other coastal ecosystems which may be threatened by the presence of nitrogen pollution. The application of the new method has proved to be a powerful tool for decision making when data availability and reliability are limited. This method could also be applied to assess other pollutants. es_ES
dc.description.sponsorship This work was supported by Erasmus Mundus -MAYANET Grant Agreement Number 2014-0872/001-001, funded with support of the European Commission, and an Excellence Scholarship awarded by the Mexican Government through the Mexican Agency for International Development Cooperation (AMEXCID). The Mexican National Water Commission provided the field data. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof The Science of The Total Environment es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Coastal ecosystems es_ES
dc.subject Coastal management es_ES
dc.subject Entropy weighting es_ES
dc.subject Grey clustering es_ES
dc.subject Nitrogen pollution es_ES
dc.subject Water quality es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Using grey clustering to evaluate nitrogen pollution in estuaries with limited data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.scitotenv.2020.137964 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//2014-0872%2F001-001/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Temino-Boes, R.; Romero-Lopez, R.; Ibarra-Zavaleta, SP.; Romero Gil, I. (2020). Using grey clustering to evaluate nitrogen pollution in estuaries with limited data. The Science of The Total Environment. 722:1-12. https://doi.org/10.1016/j.scitotenv.2020.137964 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.scitotenv.2020.137964 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 722 es_ES
dc.identifier.pmid 32208284 es_ES
dc.relation.pasarela S\406349 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Mexicana de Cooperación Internacional para el Desarrollo es_ES
dc.description.references Adame, M. F., Najera, E., Lovelock, C. E., & Brown, C. J. (2018). Avoided emissions and conservation of scrub mangroves: potential for a Blue Carbon project in the Gulf of California, Mexico. Biology Letters, 14(12), 20180400. doi:10.1098/rsbl.2018.0400 es_ES
dc.description.references Adriaenssens, V., Baets, B. D., Goethals, P. L. M., & Pauw, N. D. (2004). Fuzzy rule-based models for decision support in ecosystem management. Science of The Total Environment, 319(1-3), 1-12. doi:10.1016/s0048-9697(03)00433-9 es_ES
dc.description.references Ali, T. A., Mortula, M., Atabay, S., & Navadeh, E. (2015). A GIS-based spatiotemporal study of the variability of water quality in the Dubai Creek, UAE. Water Quality Research Journal, 51(3), 219-232. doi:10.2166/wqrjc.2015.020 es_ES
dc.description.references Andersen, J. H., Axe, P., Backer, H., Carstensen, J., Claussen, U., Fleming-Lehtinen, V., … Villnäs, A. (2010). Getting the measure of eutrophication in the Baltic Sea: towards improved assessment principles and methods. Biogeochemistry, 106(2), 137-156. doi:10.1007/s10533-010-9508-4 es_ES
dc.description.references Anguiano-Cuevas, J. R., Olivos-Ortiz, A., Cervantes, O., Azuz-Adeath, I., Ramírez-Álvarez, N., & Rivera-Rodríguez, M. C. (2015). Evaluation of trophic state in the Palo Verde estuary (Colima, México), action to regulating agricultural activities. Revista de Gestão Costeira Integrada, 15(4), 507-522. doi:10.5894/rgci582 es_ES
dc.description.references Azarnivand, A. (2017). Comment on «Assessing water quality of five typical reservoirs in lower reaches of Yellow River, China: Using a water quality index method» by Wei Hou, Shaohua Sun, Mingquan Wang, Xiang Li, Nuo Zhang, Xiaodong Xin, Li Sun, Wei Li, and Ruibao Jia (2016) [Ecological Indicators, 61, 309–316]. Ecological Indicators, 75, 8-9. doi:10.1016/j.ecolind.2016.12.020 es_ES
dc.description.references Chaudhuri, S., & Dutta, D. (2014). Mann–Kendall trend of pollutants, temperature and humidity over an urban station of India with forecast verification using different ARIMA models. Environmental Monitoring and Assessment, 186(8), 4719-4742. doi:10.1007/s10661-014-3733-6 es_ES
dc.description.references Da Costa Lobato, T., Hauser-Davis, R. A., de Oliveira, T. F., Maciel, M. C., Tavares, M. R. M., da Silveira, A. M., & Saraiva, A. C. F. (2015). Categorization of the trophic status of a hydroelectric power plant reservoir in the Brazilian Amazon by statistical analyses and fuzzy approaches. Science of The Total Environment, 506-507, 613-620. doi:10.1016/j.scitotenv.2014.11.032 es_ES
dc.description.references Delgado, A., & Romero, I. (2016). Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru. Environmental Modelling & Software, 77, 108-121. doi:10.1016/j.envsoft.2015.12.011 es_ES
dc.description.references Do-Thu, N., Morel, A., Nguyen-Viet, H., Pham-Duc, P., Nishida, K., & Kootattep, T. (2011). Assessing nutrient fluxes in a Vietnamese rural area despite limited and highly uncertain data. Resources, Conservation and Recycling, 55(9-10), 849-856. doi:10.1016/j.resconrec.2011.04.008 es_ES
dc.description.references Ferreira, J. G., Andersen, J. H., Borja, A., Bricker, S. B., Camp, J., Cardoso da Silva, M., … Claussen, U. (2011). Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuarine, Coastal and Shelf Science, 93(2), 117-131. doi:10.1016/j.ecss.2011.03.014 es_ES
dc.description.references Firmansyah, I., Spiller, M., de Ruijter, F. J., Carsjens, G. J., & Zeeman, G. (2017). Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability. Science of The Total Environment, 574, 1521-1532. doi:10.1016/j.scitotenv.2016.08.159 es_ES
dc.description.references Garmendia, M., Bricker, S., Revilla, M., Borja, Á., Franco, J., Bald, J., & Valencia, V. (2012). Eutrophication Assessment in Basque Estuaries: Comparing a North American and a European Method. Estuaries and Coasts, 35(4), 991-1006. doi:10.1007/s12237-012-9489-8 es_ES
dc.description.references Gharibi, H., Mahvi, A. H., Nabizadeh, R., Arabalibeik, H., Yunesian, M., & Sowlat, M. H. (2012). A novel approach in water quality assessment based on fuzzy logic. Journal of Environmental Management, 112, 87-95. doi:10.1016/j.jenvman.2012.07.007 es_ES
dc.description.references Gómez, N., Licursi, M., Bauer, D. E., Ambrosio, E. S., & Rodrigues Capítulo, A. (2012). Assessment of Biotic Integrity of the Coastal Freshwater Tidal Zone of a Temperate Estuary of South America through Multiple Indicators. Estuaries and Coasts, 35(5), 1328-1339. doi:10.1007/s12237-012-9528-5 es_ES
dc.description.references Gong, Z., & Forrest, J. Y.-L. (2013). Special issue on meteorological disaster risk analysis and assessment: on basis of grey systems theory. Natural Hazards, 71(2), 995-1000. doi:10.1007/s11069-013-0864-y es_ES
dc.description.references González-Marín, R. M., Moreno-Casasola, P., Castro-Luna, A. A., & Castillo, A. (2016). Regaining the traditional use of wildlife in wetlands on the coastal plain of Veracruz, Mexico: ensuring food security in the face of global climate change. Regional Environmental Change, 17(5), 1343-1354. doi:10.1007/s10113-016-0955-x es_ES
dc.description.references Hajigholizadeh, M., & Melesse, A. M. (2017). Assortment and spatiotemporal analysis of surface water quality using cluster and discriminant analyses. CATENA, 151, 247-258. doi:10.1016/j.catena.2016.12.018 es_ES
dc.description.references Islam, N., Sadiq, R., Rodriguez, M. J., & Francisque, A. (2013). Evaluation of source water protection strategies: A fuzzy-based model. Journal of Environmental Management, 121, 191-201. doi:10.1016/j.jenvman.2013.02.022 es_ES
dc.description.references Kathuria, V. (2006). Controlling water pollution in developing and transition countries—lessons from three successful cases. Journal of Environmental Management, 78(4), 405-426. doi:10.1016/j.jenvman.2005.05.007 es_ES
dc.description.references Kitsiou, D., & Karydis, M. (2011). Coastal marine eutrophication assessment: A review on data analysis. Environment International, 37(4), 778-801. doi:10.1016/j.envint.2011.02.004 es_ES
dc.description.references Koh, E.-H., Lee, S. H., Kaown, D., Moon, H. S., Lee, E., Lee, K.-K., & Kang, B.-R. (2017). Impacts of land use change and groundwater management on long-term nitrate-nitrogen and chloride trends in groundwater of Jeju Island, Korea. Environmental Earth Sciences, 76(4). doi:10.1007/s12665-017-6466-3 es_ES
dc.description.references Lermontov, A., Yokoyama, L., Lermontov, M., & Machado, M. A. S. (2009). River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. Ecological Indicators, 9(6), 1188-1197. doi:10.1016/j.ecolind.2009.02.006 es_ES
dc.description.references Li, R., Zou, Z., & An, Y. (2016). Water quality assessment in Qu River based on fuzzy water pollution index method. Journal of Environmental Sciences, 50, 87-92. doi:10.1016/j.jes.2016.03.030 es_ES
dc.description.references López-Portillo, J., Lara-Domínguez, A. L., Vázquez, G., & Aké-Castillo, J. A. (2017). Water Quality and Mangrove-Derived Tannins in Four Coastal Lagoons from the Gulf of Mexico with Variable Hydrologic Dynamics. Journal of Coastal Research, 77, 28-38. doi:10.2112/si77-004.1 es_ES
dc.description.references Lundberg, C., Lönnroth, M., von Numers, M., & Bonsdorff, E. (2005). A multivariate assessment of coastal eutrophication. Examples from the Gulf of Finland, northern Baltic Sea. Marine Pollution Bulletin, 50(11), 1185-1196. doi:10.1016/j.marpolbul.2005.04.029 es_ES
dc.description.references Macauley, J. M., Harwell, L. C., & Alafita, H. V. (2007). The Ecological Condition of Veracruz, Mexico Estuaries. Environmental Monitoring and Assessment, 133(1-3), 177-185. doi:10.1007/s10661-006-9571-4 es_ES
dc.description.references Machiwal, D., Islam, A., & Kamble, T. (2019). Trends and probabilistic stability index for evaluating groundwater quality: The case of quaternary alluvial and quartzite aquifer system of India. Journal of Environmental Management, 237, 457-475. doi:10.1016/j.jenvman.2019.02.071 es_ES
dc.description.references Luisa Martínez, M., Mendoza-González, G., Silva-Casarín, R., & Mendoza-Baldwin, E. (2014). Land use changes and sea level rise may induce a «coastal squeeze» on the coasts of Veracruz, Mexico. Global Environmental Change, 29, 180-188. doi:10.1016/j.gloenvcha.2014.09.009 es_ES
dc.description.references Martinez, M. L., Silva, R., Lithgow, D., Mendoza, E., Flores, P., Martínez, R., & Cruz, C. (2017). Human Impact on Coastal Resilience along the Coast of Veracruz, Mexico. Journal of Coastal Research, 77, 143-153. doi:10.2112/si77-015.1 es_ES
dc.description.references Mendoza-González, G., Martínez, M. L., Lithgow, D., Pérez-Maqueo, O., & Simonin, P. (2012). Land use change and its effects on the value of ecosystem services along the coast of the Gulf of Mexico. Ecological Economics, 82, 23-32. doi:10.1016/j.ecolecon.2012.07.018 es_ES
dc.description.references Miró, J. J., Estrela, M. J., Caselles, V., & Gómez, I. (2018). Spatial and temporal rainfall changes in the Júcar and Segura basins (1955-2016): Fine-scale trends. International Journal of Climatology, 38(13), 4699-4722. doi:10.1002/joc.5689 es_ES
dc.description.references Montangero, A., & Belevi, H. (2007). Assessing nutrient flows in septic tanks by eliciting expert judgement: A promising method in the context of developing countries. Water Research, 41(5), 1052-1064. doi:10.1016/j.watres.2006.10.036 es_ES
dc.description.references Montangero, A., & Belevi, H. (2008). An approach to optimise nutrient management in environmental sanitation systems despite limited data. Journal of Environmental Management, 88(4), 1538-1551. doi:10.1016/j.jenvman.2007.07.033 es_ES
dc.description.references Ninčević-Gladan, Ž., Bužančić, M., Kušpilić, G., Grbec, B., Matijević, S., Skejić, S., … Morović, M. (2015). The response of phytoplankton community to anthropogenic pressure gradient in the coastal waters of the eastern Adriatic Sea. Ecological Indicators, 56, 106-115. doi:10.1016/j.ecolind.2015.03.018 es_ES
dc.description.references Ocampo-Duque, W., Schuhmacher, M., & Domingo, J. L. (2007). A neural-fuzzy approach to classify the ecological status in surface waters. Environmental Pollution, 148(2), 634-641. doi:10.1016/j.envpol.2006.11.027 es_ES
dc.description.references Primpas, I., Tsirtsis, G., Karydis, M., & Kokkoris, G. D. (2010). Principal component analysis: Development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecological Indicators, 10(2), 178-183. doi:10.1016/j.ecolind.2009.04.007 es_ES
dc.description.references Rivera-Guzmán, N. E., Moreno-Casasola, P., Ibarra-Obando, S. E., Sosa, V. J., & Herrera-Silveira, J. (2014). Long term state of coastal lagoons in Veracruz, Mexico: Effects of land use changes in watersheds on seagrasses habitats. Ocean & Coastal Management, 87, 30-39. doi:10.1016/j.ocecoaman.2013.10.007 es_ES
dc.description.references Rodríguez-Romero, A., Rico-Sánchez, A., Mendoza-Martínez, E., Gómez-Ruiz, A., Sedeño-Díaz, J., & López-López, E. (2018). Impact of Changes of Land Use on Water Quality, from Tropical Forest to Anthropogenic Occupation: A Multivariate Approach. Water, 10(11), 1518. doi:10.3390/w10111518 es_ES
dc.description.references Romero, I., Pachés, M., Martínez-Guijarro, R., & Ferrer, J. (2013). Glophymed: An index to establish the ecological status for the Water Framework Directive based on phytoplankton in coastal waters. Marine Pollution Bulletin, 75(1-2), 218-223. doi:10.1016/j.marpolbul.2013.07.028 es_ES
dc.description.references Sánchez-Hernández, M., Robina-Ramírez, R., & De Clercq, W. (2017). Water Management Reporting in the Agro-Food Sector in South Africa. Water, 9(11), 830. doi:10.3390/w9110830 es_ES
dc.description.references Scannapieco, D., Naddeo, V., Zarra, T., & Belgiorno, V. (2012). River water quality assessment: A comparison of binary- and fuzzy logic-based approaches. Ecological Engineering, 47, 132-140. doi:10.1016/j.ecoleng.2012.06.015 es_ES
dc.description.references Schärer, M., Page, T., & Beven, K. (2006). A fuzzy decision tree to predict phosphorus export at the catchment scale. Journal of Hydrology, 331(3-4), 484-494. doi:10.1016/j.jhydrol.2006.05.034 es_ES
dc.description.references Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379-1389. doi:10.1080/01621459.1968.10480934 es_ES
dc.description.references Sepehri, M., Malekinezhad, H., Hosseini, S. Z., & Ildoromi, A. R. (2019). Assessment of flood hazard mapping in urban areas using entropy weighting method: a case study in Hamadan city, Iran. Acta Geophysica, 67(5), 1435-1449. doi:10.1007/s11600-019-00342-x es_ES
dc.description.references Shaban, M., Urban, B., El Saadi, A., & Faisal, M. (2010). Detection and mapping of water pollution variation in the Nile Delta using multivariate clustering and GIS techniques. Journal of Environmental Management, 91(8), 1785-1793. doi:10.1016/j.jenvman.2010.03.020 es_ES
dc.description.references Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623-656. doi:10.1002/j.1538-7305.1948.tb00917.x es_ES
dc.description.references Shooshtarian, M. R., Dehghani, M., Margherita, F., Gea, O. C., & Mortezazadeh, S. (2018). Land use change and conversion effects on ground water quality trends: An integration of land change modeler in GIS and a new Ground Water Quality Index developed by fuzzy multi-criteria group decision-making models. Food and Chemical Toxicology, 114, 204-214. doi:10.1016/j.fct.2018.02.025 es_ES
dc.description.references Tabari, H., Marofi, S., & Ahmadi, M. (2010). Long-term variations of water quality parameters in the Maroon River, Iran. Environmental Monitoring and Assessment, 177(1-4), 273-287. doi:10.1007/s10661-010-1633-y es_ES
dc.description.references Temino-Boes, R., Romero-López, R., & Romero, I. (2019). A Spatiotemporal Analysis of Nitrogen Pollution in a Coastal Region with Mangroves of the Southern Gulf of Mexico. Water, 11(10), 2143. doi:10.3390/w11102143 es_ES
dc.description.references Tseng, M.-L. (2009). A causal and effect decision making model of service quality expectation using grey-fuzzy DEMATEL approach. Expert Systems with Applications, 36(4), 7738-7748. doi:10.1016/j.eswa.2008.09.011 es_ES
dc.description.references Turner, R., & Rabalais, N. (2013). Nitrogen and phosphorus phytoplankton growth limitation in the northern Gulf of Mexico. Aquatic Microbial Ecology, 68(2), 159-169. doi:10.3354/ame01607 es_ES
dc.description.references Ulloa, M. J., Álvarez-Torres, P., Horak-Romo, K. P., & Ortega-Izaguirre, R. (2017). Harmful algal blooms and eutrophication along the mexican coast of the Gulf of Mexico large marine ecosystem. Environmental Development, 22, 120-128. doi:10.1016/j.envdev.2016.10.007 es_ES
dc.description.references Vadde, K., Wang, J., Cao, L., Yuan, T., McCarthy, A., & Sekar, R. (2018). Assessment of Water Quality and Identification of Pollution Risk Locations in Tiaoxi River (Taihu Watershed), China. Water, 10(2), 183. doi:10.3390/w10020183 es_ES
dc.description.references Vatansever, K., & Akgűl, Y. (2018). Performance evaluation of websites using entropy and grey relational analysis methods: The case of airline companies. Decision Science Letters, 119-130. doi:10.5267/j.dsl.2017.6.005 es_ES
dc.description.references Vázquez-González, C., Moreno-Casasola, P., Juárez, A., Rivera-Guzmán, N., Monroy, R., & Espejel, I. (2015). Trade-offs in fishery yield between wetland conservation and land conversion on the Gulf of Mexico. Ocean & Coastal Management, 114, 194-203. doi:10.1016/j.ocecoaman.2015.06.020 es_ES
dc.description.references Kong, X., Liu, Y., Jian, H., Su, R., Yao, Q., & Shi, X. (2017). New approach for rapid assessment of trophic status of Yellow Sea and East China Sea using easy-to-measure parameters. Journal of Ocean University of China, 16(5), 781-792. doi:10.1007/s11802-017-3203-1 es_ES
dc.description.references Ye, J., Dang, Y., & Li, B. (2018). Grey-Markov prediction model based on background value optimization and central-point triangular whitenization weight function. Communications in Nonlinear Science and Numerical Simulation, 54, 320-330. doi:10.1016/j.cnsns.2017.06.004 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem