- -

Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yepes, V. es_ES
dc.contributor.author Martí Albiñana, José Vicente es_ES
dc.contributor.author García, José es_ES
dc.date.accessioned 2021-03-02T04:31:29Z
dc.date.available 2021-03-02T04:31:29Z
dc.date.issued 2020-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162639
dc.description.abstract [EN] The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min¿max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R) to the first and second authors, and the Grant CONICYT/FONDECYT/INICIACION/11180056 to the third author. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject CO2 emission es_ES
dc.subject Earth-retaining walls es_ES
dc.subject Optimization es_ES
dc.subject Black holes es_ES
dc.subject Min-max discretization es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12072767 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//11180056/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Yepes, V.; Martí Albiñana, JV.; García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability. 12(7):1-18. https://doi.org/10.3390/su12072767 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12072767 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\407083 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.description.references Frangopol, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges1. Structure and Infrastructure Engineering, 7(6), 389-413. doi:10.1080/15732471003594427 es_ES
dc.description.references Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592-1600. doi:10.1016/j.enbuild.2010.05.007 es_ES
dc.description.references Boesch, M. E., & Hellweg, S. (2010). Identifying Improvement Potentials in Cement Production with Life Cycle Assessment. Environmental Science & Technology, 44(23), 9143-9149. doi:10.1021/es100771k es_ES
dc.description.references Serpell, A., Kort, J., & Vera, S. (2013). AWARENESS, ACTIONS, DRIVERS AND BARRIERS OF SUSTAINABLE CONSTRUCTION IN CHILE. Technological and Economic Development of Economy, 19(2), 272-288. doi:10.3846/20294913.2013.798597 es_ES
dc.description.references Yusof, N., Zainul Abidin, N., Zailani, S. H. M., Govindan, K., & Iranmanesh, M. (2016). Linking the environmental practice of construction firms and the environmental behaviour of practitioners in construction projects. Journal of Cleaner Production, 121, 64-71. doi:10.1016/j.jclepro.2016.01.090 es_ES
dc.description.references Wang, T., Lee, I.-S., Kendall, A., Harvey, J., Lee, E.-B., & Kim, C. (2012). Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance. Journal of Cleaner Production, 33, 86-96. doi:10.1016/j.jclepro.2012.05.001 es_ES
dc.description.references Wang, E., & Shen, Z. (2013). A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. Journal of Cleaner Production, 43, 166-173. doi:10.1016/j.jclepro.2012.12.010 es_ES
dc.description.references Barandica, J. M., Fernández-Sánchez, G., Berzosa, Á., Delgado, J. A., & Acosta, F. J. (2013). Applying life cycle thinking to reduce greenhouse gas emissions from road projects. Journal of Cleaner Production, 57, 79-91. doi:10.1016/j.jclepro.2013.05.036 es_ES
dc.description.references Aguado, A., Caño, A. del, de la Cruz, M. P., Gómez, D., & Josa, A. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. Journal of Construction Engineering and Management, 138(2), 268-276. doi:10.1061/(asce)co.1943-7862.0000419 es_ES
dc.description.references Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms. Engineering Structures, 134, 205-216. doi:10.1016/j.engstruct.2016.12.042 es_ES
dc.description.references Yepes, V., Martí, J. V., & García-Segura, T. (2015). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123-134. doi:10.1016/j.autcon.2014.10.013 es_ES
dc.description.references Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. (2001). CARBON DIOXIDE EMISSIONS FROM THE GLOBAL CEMENT INDUSTRY. Annual Review of Energy and the Environment, 26(1), 303-329. doi:10.1146/annurev.energy.26.1.303 es_ES
dc.description.references Molina-Moreno, F., Martí, J. V., & Yepes, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: Implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884. doi:10.1016/j.jclepro.2017.06.246 es_ES
dc.description.references Yepes, V., Gonzalez-Vidosa, F., Alcala, J., & Villalba, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering, 26(3), 378-386. doi:10.1061/(asce)cp.1943-5487.0000140 es_ES
dc.description.references Yoon, Y.-C., Kim, K.-H., Lee, S.-H., & Yeo, D. (2018). Sustainable design for reinforced concrete columns through embodied energy and CO2 emission optimization. Energy and Buildings, 174, 44-53. doi:10.1016/j.enbuild.2018.06.013 es_ES
dc.description.references Sierra, L. A., Pellicer, E., & Yepes, V. (2016). Social Sustainability in the Lifecycle of Chilean Public Infrastructure. Journal of Construction Engineering and Management, 142(5), 05015020. doi:10.1061/(asce)co.1943-7862.0001099 es_ES
dc.description.references Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140 es_ES
dc.description.references Moayyeri, N., Gharehbaghi, S., & Plevris, V. (2019). Cost-Based Optimum Design of Reinforced Concrete Retaining Walls Considering Different Methods of Bearing Capacity Computation. Mathematics, 7(12), 1232. doi:10.3390/math7121232 es_ES
dc.description.references Pons, J. J., Penadés-Plà, V., Yepes, V., & Martí, J. V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192, 411-420. doi:10.1016/j.jclepro.2018.04.268 es_ES
dc.description.references Lu, K., Jiang, X., Tam, V. W. Y., Li, M., Wang, H., Xia, B., & Chen, Q. (2019). Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects. Sustainability, 11(22), 6274. doi:10.3390/su11226274 es_ES
dc.description.references De Medeiros, G. F., & Kripka, M. (2014). Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 59, 185-194. doi:10.1016/j.engstruct.2013.10.045 es_ES
dc.description.references Hussain, K., Mohd Salleh, M. N., Cheng, S., & Shi, Y. (2018). Metaheuristic research: a comprehensive survey. Artificial Intelligence Review, 52(4), 2191-2233. doi:10.1007/s10462-017-9605-z es_ES
dc.description.references Zong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201 es_ES
dc.description.references Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 es_ES
dc.description.references Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41-51. doi:10.1007/bf00940812 es_ES
dc.description.references Carbonell, A., González-Vidosa, F., & Yepes, V. (2011). Design of reinforced concrete road vaults by heuristic optimization. Advances in Engineering Software, 42(4), 151-159. doi:10.1016/j.advengsoft.2011.01.002 es_ES
dc.description.references Zavadskas, E., Antucheviciene, J., Vilutiene, T., & Adeli, H. (2017). Sustainable Decision-Making in Civil Engineering, Construction and Building Technology. Sustainability, 10(2), 14. doi:10.3390/su10010014 es_ES
dc.description.references Shi, X., Wu, L., & Meng, X. (2017). A New Optimization Model for the Sustainable Development: Quadratic Knapsack Problem with Conflict Graphs. Sustainability, 9(2), 236. doi:10.3390/su9020236 es_ES
dc.description.references Sierra, L. A., Yepes, V., & Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, 496-513. doi:10.1016/j.jclepro.2018.03.022 es_ES
dc.description.references García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., … Astorga, G. (2019). A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Computational Intelligence and Neuroscience, 2019, 1-16. doi:10.1155/2019/3238574 es_ES
dc.description.references García, J., Crawford, B., Soto, R., & Astorga, G. (2019). A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm and Evolutionary Computation, 44, 646-664. doi:10.1016/j.swevo.2018.08.006 es_ES
dc.description.references Yepes, V., Alcala, J., Perea, C., & González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821-830. doi:10.1016/j.engstruct.2007.05.023 es_ES
dc.description.references García-Segura, T., Yepes, V., & Alcalá, J. (2013). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3-12. doi:10.1007/s11367-013-0614-0 es_ES
dc.description.references Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222, 175-184. doi:10.1016/j.ins.2012.08.023 es_ES
dc.description.references García-Segura, T., Yepes, V., Alcalá, J., & Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112-122. doi:10.1016/j.engstruct.2015.03.015 es_ES
dc.description.references García, J., Lalla-Ruiz, E., Voß, S., & Droguett, E. L. (2020). Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem. International Journal of Machine Learning and Cybernetics, 11(9), 1951-1970. doi:10.1007/s13042-020-01085-8 es_ES
dc.description.references García, J., Crawford, B., Soto, R., Castro, C., & Paredes, F. (2017). A k-means binarization framework applied to multidimensional knapsack problem. Applied Intelligence, 48(2), 357-380. doi:10.1007/s10489-017-0972-6 es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem