- -

Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rosa-Ramírez, Harrison de la es_ES
dc.contributor.author Aldás-Carrasco, Miguel Fernando es_ES
dc.contributor.author Ferri, J.M. es_ES
dc.contributor.author López-Martínez, Juan es_ES
dc.contributor.author Samper, María-Dolores es_ES
dc.date.accessioned 2021-03-03T04:31:53Z
dc.date.available 2021-03-03T04:31:53Z
dc.date.issued 2020-11-20 es_ES
dc.identifier.issn 0021-8995 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162862
dc.description "This is the peer reviewed version of the following article: De La Rosa-Ramírez, Harrison, Miguel Aldas, José Miguel Ferri, Juan López-Martínez, and María Dolores Samper. 2020. "Modification of Poly (Lactic Acid) through the Incorporation of Gum Rosin and Gum Rosin Derivative: Mechanical Performance and Hydrophobicity." Journal of Applied Polymer Science 137 (44). Wiley: 49346. doi:10.1002/app.49346, which has been published in final form at https://doi.org/10.1002/app.49346. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] The modification of PLA by melt compound with gum rosin (GR) and pentaerythritol ester of GR (PEGR) was investigated by studying the mechanical and thermal performance, blends morphology, wettability, and water absorption. Standard testing specimens for characterization were made at a variate resin content of 5, 10, and 15 part per hundred resin (phr) and manufactured by injection molding. It was found that GR and PEGR had a lubricating effect in PLA polymeric chains, resulting in a remarkable increase of 790 and 193% in melt flow index with only 5 phr GR and PEGR contents, respectively. A significant change in more than 10 degrees of increasing water contact angle was observed for PLA with 15 phr PEGR. Thermogravimetric analysis reveals that PEGR led to delayed PLA degradation/decomposition process to higher temperature, increasing the onset temperature (T-5%) in more than 7 degrees C for PLA with 15 phr PEGR. es_ES
dc.description.sponsorship This research was supported by the Ministry of Economy and Competitiveness-PROMADEPCOL Ref: (MAT2017-84909-C2-2-R). Authors also want to acknowledge the postdoc contract offered to José Miguel Ferri by the Generalitat Valenciana, which project title is "BIONANOCOMPOSITES BASADOS EN MEZCLAS DE PLA Y TPS CON MEMORIA" (APOSTD/2019/122) GENERALITAT VALENCIANA (2019-2021). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Applied Polymer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Colophony es_ES
dc.subject Gum rosin es_ES
dc.subject Pentaerythritol ester of gum rosin es_ES
dc.subject Poly (lactic acid) es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/app.49346 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F122/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Rosa-Ramírez, HDL.; Aldás-Carrasco, MF.; Ferri, J.; López-Martínez, J.; Samper, M. (2020). Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity. Journal of Applied Polymer Science. 137(44):1-15. https://doi.org/10.1002/app.49346 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/app.49346 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 137 es_ES
dc.description.issue 44 es_ES
dc.relation.pasarela S\412462 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references European Bioplastics. Market data about global production capacity of bioplastics on 2019. [Online] https://www.european-bioplastics.org/market/(accessed February 2020). es_ES
dc.description.references Muthuraj, R., Misra, M., & Mohanty, A. K. (2017). Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135(24), 45726. doi:10.1002/app.45726 es_ES
dc.description.references Koller, M., Maršálek, L., de Sousa Dias, M. M., & Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24-38. doi:10.1016/j.nbt.2016.05.001 es_ES
dc.description.references Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45. doi:10.1016/j.polymdegradstab.2015.04.026 es_ES
dc.description.references Gumede, T. P., Luyt, A. S., & Muller, A. J. (2018). Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes. Express Polymer Letters, 12(6), 505-529. doi:10.3144/expresspolymlett.2018.43 es_ES
dc.description.references Garcia-Garcia, D., Lopez-Martinez, J., Balart, R., Strömberg, E., & Moriana, R. (2018). Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) thermoplastic blend. European Polymer Journal, 104, 10-18. doi:10.1016/j.eurpolymj.2018.04.036 es_ES
dc.description.references Garcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2018). Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487-498. doi:10.1016/j.clay.2018.06.042 es_ES
dc.description.references Garcia-Garcia, D., Ferri, J. M., Boronat, T., Lopez-Martinez, J., & Balart, R. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin, 73(12), 3333-3350. doi:10.1007/s00289-016-1659-6 es_ES
dc.description.references Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812 es_ES
dc.description.references Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. doi:10.1111/j.1541-4337.2010.00126.x es_ES
dc.description.references Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004 es_ES
dc.description.references Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016 es_ES
dc.description.references Liu, M., Zeng, G., Wang, K., Wan, Q., Tao, L., Zhang, X., & Wei, Y. (2016). Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale, 8(38), 16819-16840. doi:10.1039/c5nr09078d es_ES
dc.description.references Urquijo, J., Guerrica-Echevarría, G., & Eguiazábal, J. I. (2015). Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. Journal of Applied Polymer Science, 132(41), n/a-n/a. doi:10.1002/app.42641 es_ES
dc.description.references Tripathi, N., & Katiyar, V. (2016). PLA/functionalized-gum arabic based bionanocomposite films for high gas barrier applications. Journal of Applied Polymer Science, 133(21), n/a-n/a. doi:10.1002/app.43458 es_ES
dc.description.references Huang, Q., Liu, M., Mao, L., Xu, D., Zeng, G., Huang, H., … Wei, Y. (2017). Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye. Journal of Colloid and Interface Science, 499, 170-179. doi:10.1016/j.jcis.2017.03.102 es_ES
dc.description.references Huang, Q., Liu, M., Chen, J., Wan, Q., Tian, J., Huang, L., … Wei, Y. (2017). Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Applied Surface Science, 419, 35-44. doi:10.1016/j.apsusc.2017.05.006 es_ES
dc.description.references Huang, H., Liu, M., Xu, D., Mao, L., Huang, Q., Deng, F., … Wei, Y. (2020). Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP. Materials Science and Engineering: C, 106, 110157. doi:10.1016/j.msec.2019.110157 es_ES
dc.description.references Pawlak, F., Aldas, M., López-Martínez, J., & Samper, M. D. (2019). Effect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool. Polymers, 11(9), 1514. doi:10.3390/polym11091514 es_ES
dc.description.references Yang, S., Wu, Z.-H., Yang, W., & Yang, M.-B. (2008). Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, 27(8), 957-963. doi:10.1016/j.polymertesting.2008.08.009 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082 es_ES
dc.description.references Bhasney, S. M., Patwa, R., Kumar, A., & Katiyar, V. (2017). Plasticizing effect of coconut oil on morphological, mechanical, thermal, rheological, barrier, and optical properties of poly(lactic acid): A promising candidate for food packaging. Journal of Applied Polymer Science, 134(41), 45390. doi:10.1002/app.45390 es_ES
dc.description.references Moustafa, H., El Kissi, N., Abou-Kandil, A. I., Abdel-Aziz, M. S., & Dufresne, A. (2017). PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS Applied Materials & Interfaces, 9(23), 20132-20141. doi:10.1021/acsami.7b05557 es_ES
dc.description.references Niu X.;Liu Y.;Song Y.;Han J.;Pan H.2018 183 102. es_ES
dc.description.references Pavon, C., Aldas, M., López-Martínez, J., & Ferrándiz, S. (2020). New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers, 12(2), 334. doi:10.3390/polym12020334 es_ES
dc.description.references Mitchell, G. R., Biscaia, S., Mahendra, V. S., & Mateus, A. (2016). High Value Materials from the Forests. Advances in Materials Physics and Chemistry, 06(03), 54-60. doi:10.4236/ampc.2016.63006 es_ES
dc.description.references Wiyono, B., Tachibana, S., & Tinambunan, D. (2006). Chemical Compositions of Pine Resin, Rosin and Turpentine Oil from West Java. Indonesian Journal of Forestry Research, 3(1), 7-17. doi:10.20886/ijfr.2006.3.1.7-17 es_ES
dc.description.references Karlberg, A.-T. (2012). Colophony: Rosin in Unmodified and Modified Form. Kanerva’s Occupational Dermatology, 467-479. doi:10.1007/978-3-642-02035-3_41 es_ES
dc.description.references Liu, B., Nie, J., & He, Y. (2016). From rosin to high adhesive polyurethane acrylate: Synthesis and properties. International Journal of Adhesion and Adhesives, 66, 99-103. doi:10.1016/j.ijadhadh.2016.01.002 es_ES
dc.description.references Kumooka, Y. (2008). Analysis of rosin and modified rosin esters in adhesives by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Forensic Science International, 176(2-3), 111-120. doi:10.1016/j.forsciint.2007.07.009 es_ES
dc.description.references Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236 es_ES
dc.description.references Safety data Sheet. SIGMA‐ALDRICH; 2018. es_ES
dc.description.references International Standards Organization. ISO 527‐2:2012. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics; 2012. es_ES
dc.description.references International Standards Organization. ISO 1133‐1:2012. Plastics—Determination of the melt mass‐flow rate (MFR) and melt volume‐flow rate (MVR) of thermoplastics—Part 1: Standard method; 2012. es_ES
dc.description.references International Standards Organization. Plastics—Determination of water absorption; 2008. es_ES
dc.description.references Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208 es_ES
dc.description.references International Standards Organization. ISO 178:2019. Plastics—Determination of flexural properties; 2019. es_ES
dc.description.references International Standards Organization. ISO 179‐1:2010. Plastics—Determination of Charpy impact properties—Part 1: Non‐instrumented impact test; 2010. es_ES
dc.description.references International Standards Organization. ISO 868:2003. Plastics and ebonite—Determination of indentation hardness by means of a durometer (Shore hardness); 2003. es_ES
dc.description.references International Standards Organization. ISO 306:2013. Plastics—Thermoplastic materials—Determination of Vicat softening temperature (VST); 2013. es_ES
dc.description.references International Standards Organization. ISO 75:2013. Plastics—Determination of temperature of deflection under load—Part 2: Plastics and ebonite; 2013. es_ES
dc.description.references Turan, D., Sirin, H., & Ozkoc, G. (2011). Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and Plasticised PLA. Journal of Applied Polymer Science, 121(2), 1067-1075. doi:10.1002/app.33802 es_ES
dc.description.references Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024 es_ES
dc.description.references Sigma‐Aldrich. Gum Rosin Safety data sheet; 2019; pp 1–8. es_ES
dc.description.references Siddiki, S. M. A. H., Toyao, T., Kon, K., Touchy, A. S., & Shimizu, K. (2016). Catalytic hydrolysis of hydrophobic esters on/in water by high-silica large pore zeolites. Journal of Catalysis, 344, 741-748. doi:10.1016/j.jcat.2016.08.021 es_ES
dc.description.references Liang, Y.-T., Yang, G.-P., Liu, B., Yan, Y.-T., Xi, Z.-P., & Wang, Y.-Y. (2015). Four super water-stable lanthanide–organic frameworks with active uncoordinated carboxylic and pyridyl groups for selective luminescence sensing of Fe3+. Dalton Transactions, 44(29), 13325-13330. doi:10.1039/c5dt01421b es_ES
dc.description.references Cabaret, T., Boulicaud, B., Chatet, E., & Charrier, B. (2018). Study of rosin softening point through thermal treatment for a better understanding of maritime pine exudation. European Journal of Wood and Wood Products, 76(5), 1453-1459. doi:10.1007/s00107-018-1339-3 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751 es_ES
dc.description.references Najafi, N., Heuzey, M. C., Carreau, P. J., & Wood-Adams, P. M. (2012). Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders. Polymer Degradation and Stability, 97(4), 554-565. doi:10.1016/j.polymdegradstab.2012.01.016 es_ES
dc.description.references Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2 es_ES
dc.description.references Nehra, R., Maiti, S. N., & Jacob, J. (2017). Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. Journal of Applied Polymer Science, 135(1), 45644. doi:10.1002/app.45644 es_ES
dc.description.references Odian, G. (2004). Principles of Polymerization. doi:10.1002/047147875x es_ES
dc.description.references Sauer, J. A. (1977). Deformation, yield and fracture of polymers at high pressure. Polymer Engineering and Science, 17(3), 150-164. doi:10.1002/pen.760170304 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem