- -

Teleoperation of industrial robot manipulators based on augmented reality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Teleoperation of industrial robot manipulators based on augmented reality

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Solanes Galbis, Juan Ernesto es_ES
dc.contributor.author Muñoz García, Adolfo es_ES
dc.contributor.author Gracia Calandin, Luis Ignacio es_ES
dc.contributor.author Martí Testón, Ana es_ES
dc.contributor.author Girbés, Vicent es_ES
dc.contributor.author Tornero Montserrat, Josep es_ES
dc.date.accessioned 2021-03-03T04:32:07Z
dc.date.available 2021-03-03T04:32:07Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 0268-3768 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162868
dc.description.abstract [EN] This research develops a novel teleoperation for robot manipulators based on augmented reality. The proposed interface is equipped with full capabilities in order to replace the classical teach pendant of the robot for carrying out teleoperation tasks. The proposed interface is based on an augmented reality headset for projecting computer-generated graphics onto the real environment and a gamepad to interact with the computer-generated graphics and provide robot commands. In order to demonstrate the benefits of the proposed method, several usability tests were conducted using a 6R industrial robot manipulator in order to compare the proposed interface and the conventional teach pendant interface for teleoperation tasks. In particular,the results ofthese usabilitytests show thattheproposedapproach is more intuitive, ergonomic,and easy to use. Furthermore, the comparison results also show that the proposed method clearly improves the velocity of the teleoperation task, regardless of the user's previous experience in robotics and augmented reality technology. es_ES
dc.description.sponsorship This work was supported by the Spanish Government under the project DPI2017-87656-C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The International Journal of Advanced Manufacturing Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Augmented reality interface es_ES
dc.subject Industry 4.0 es_ES
dc.subject Industrial robot teleoperation es_ES
dc.subject Mixed reality interface es_ES
dc.subject Guiding industrial robots es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification COMUNICACION AUDIOVISUAL Y PUBLICIDAD es_ES
dc.title Teleoperation of industrial robot manipulators based on augmented reality es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00170-020-05997-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87656-C2-1-R/ES/VISION ARTIFICIAL Y ROBOTICA COLABORATIVA EN PULIDO DE SUPERFICIES EN LA INDUSTRIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AEST%2F2019%2F010/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicación Audiovisual, Documentación e Historia del Arte - Departament de Comunicació Audiovisual, Documentació i Història de l'Art es_ES
dc.description.bibliographicCitation Solanes Galbis, JE.; Muñoz García, A.; Gracia Calandin, LI.; Martí Testón, A.; Girbés, V.; Tornero Montserrat, J. (2020). Teleoperation of industrial robot manipulators based on augmented reality. The International Journal of Advanced Manufacturing Technology. 111(3-4):1077-1097. https://doi.org/10.1007/s00170-020-05997-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00170-020-05997-1 es_ES
dc.description.upvformatpinicio 1077 es_ES
dc.description.upvformatpfin 1097 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 111 es_ES
dc.description.issue 3-4 es_ES
dc.relation.pasarela S\419304 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references ABB: Abb teach pendant (Accessed 04/24/2020) es_ES
dc.description.references Attig C, Wessel D, Franke T (2017) Assessing personality differences in human-technology interaction: an overview of key self-report scales to predict successful interaction. In: Stephanidis C es_ES
dc.description.references (ed) HCI International 2017 - posters' extended abstracts. Springer International Publishing, Cham, pp 19-29 es_ES
dc.description.references Bandala M, West C, Monk S, Montazeri A, Taylor CJ (2019) Vision-based assisted tele-operation of a dual-arm hydraulically actuated robot for pipe cutting and grasping in nuclear environments. Robotics 8(2):42 es_ES
dc.description.references Bermejo C, Hui P (2017) A survey on haptic technologies for mobile augmented reality. arXiv:1709.00698 es_ES
dc.description.references Billard A, Calinon S, Dillmann R, Schaal S (2008) Robot programming by demonstration. Springer, Berlin, pp 1371–1394 es_ES
dc.description.references Bostanci E, Kanwal N, Ehsan S, Clark AF (2013) User tracking methods for augmented reality. In: International Journal of Computer Theory and Engineering, pp 93–98 es_ES
dc.description.references Brooke J (1996) SUS-A quick and dirty usability scale Usability evaluation in industry. CRC Press, ISBN: 9780748404605 es_ES
dc.description.references Cardoso JCS (2016) Comparison of gesture, gamepad, and gaze-based locomotion for VR worlds. In: Proceedings of the 22nd ACM conference on virtual reality software and technology. Association for Computing Machinery, New York, pp 319–320 es_ES
dc.description.references Circuit 1 demonstration: https://media.upv.es/player/?id=8be7f8e0-99b4-11ea-a399-57da8aaa21ee (Accessed 05/14/2020) es_ES
dc.description.references Circuit 2 demonstration: https://media.upv.es/player/?id=afda6530-99b4-11ea-a399-57da8aaa21ee (Accessed 05/14/2020) es_ES
dc.description.references Circuit 3 demonstration: https://media.upv.es/player/?id=56c62d20-99b5-11ea-a399-57da8aaa21ee (Accessed 05/14/2020) es_ES
dc.description.references Circuit 4 demonstration: https://media.upv.es/player/?id=9461f740-99b5-11ea-a399-57da8aaa21ee (Accessed 05/14/2020) es_ES
dc.description.references Codd-Downey R, Jenkin M (2018) Wireless teleoperation of an underwater robot using li-fi. In: 2018 IEEE International conference on information and automation (ICIA), pp 859–864 es_ES
dc.description.references Craig AB (2013) Chapter 2 - augmented reality concepts. In: Craig AB (ed) Understanding augmented reality. Morgan Kaufmann, Boston, pp 39–67 es_ES
dc.description.references Fanuc: Fanuc ipendant (Accessed 04/24/2020) es_ES
dc.description.references Ferreira A, Bastos-filho TF, Null Cheein FA, Postigo JF, Carelli R (2006) Teleoperation of an industrial manipulator through a tcp/ip channel using eeg signals. 2006 IEEE International Symposium on Industrial Electronics 4:3066–3071 es_ES
dc.description.references Fondazione Istituto Italiano di Tecnologia : force/torque sensors (2015). Accessed 04/04/2020 es_ES
dc.description.references Franke T, Attig C, Wessel D (2018) A personal resource for technology interaction: development and validation of the affinity for technology interaction (ati) scale. Int J Human-Computer Interac 0(0):1–12 es_ES
dc.description.references Gadre SY, Rosen E, Chien G, Phillips E, Tellex S, Konidaris G (2019) End-user robot programming using mixed reality. In: 2019 International conference on robotics and automation (ICRA), pp 2707–2713 es_ES
dc.description.references Grahn I The vuforia sdk and unity3d game engine : evaluating performance on android devices es_ES
dc.description.references Hart SG, Staveland LE (1988) Development of nasa-tlx (task load index): results of empirical and theoretical research. In: Hancock PA, Meshkati N (eds) Human mental workload, advances in psychology, vol 52, North-Holland, pp 139–183 es_ES
dc.description.references Hess R (2010) Blender foundations: the essential guide to learning blender 2.6 focal press es_ES
dc.description.references Isop WA, Gebhardt C, Nageli T, Fraundorfer F, Hilliges O, Schmalstieg D (2019) High-level teleoperation system for aerial exploration of indoor environments. Frontiers in Robotics and AI 6:95 es_ES
dc.description.references Jackson S (2015) Unity 3D UI essentials. Packt Publishing es_ES
dc.description.references Kitson A, Hashemian AM, Stepanova ER, Kruijff E, Riecke BE (2017) Comparing leaning-based motion cueing interfaces for virtual reality locomotion. In: 2017 IEEE Symposium on 3d user interfaces (3DUI), pp 73–82 es_ES
dc.description.references Kuka: Kuka smartpad teach pendant (Accessed 04/24/2020) es_ES
dc.description.references Li C, Fahmy A, Sienz J (2019) An augmented reality based human-robot interaction interface using kalman filter sensor fusion. Sensors 19(20):4586 es_ES
dc.description.references Liang C, Liu C, Liu X, Cheng L, Yang C (2019) Robot teleoperation system based on mixed reality. In: 2019 IEEE 4Th international conference on advanced robotics and mechatronics (ICARM), pp 384–389 es_ES
dc.description.references Marinho MM, Adorno BV, Harada K, Deie K, Deguet A, Kazanzides P, Taylor RH, Mitsuishi M (2019) A unified framework for the teleoperation of surgical robots in constrained workspaces. In: 2019 international conference on robotics and automation (ICRA) es_ES
dc.description.references Microsoft Hololens (2nd gen) hardware details: https://www.microsoft.com/en-us/hololens/hardware (Accessed 04/24/2020) es_ES
dc.description.references Munawar A, Fischer G (2016) A surgical robot teleoperation framework for providing haptic feedback incorporating virtual environment-based guidance. Frontiers in Robotics and AI 3:47 es_ES
dc.description.references Muñoz A, Mahiques X, Solanes JE, Martí A, Gracia L, Tornero J (2019) Mixed reality-based user interface for quality control inspection of car body surfaces. J Manuf Syst 53:75–92 es_ES
dc.description.references Muñoz A, Martí A, Mahiques X, Gracia L, Solanes JE, Tornero J (2020) Camera 3D positioning mixed reality-based interface to improve worker safety, ergonomics and productivity. CIRP J Manuf Sci Technol 28:24–37 es_ES
dc.description.references Park DY (2017) Mrtk: Open-source building blocks for windows mixed reality experiences. https://github.com/cre8ivepark/ es_ES
dc.description.references Rosen E, Whitney D, Phillips E, Chien G, Tompkin J, Konidaris G, Tellex S (2019) Communicating and controlling robot arm motion intent through mixed-reality head-mounted displays. Int J Robot Res 38(12-13):1513–1526 es_ES
dc.description.references Siciliano B, Sciavicco L, Villani L, Oriolo G (2009) Robotics: modelling, planning and control. Springer, London es_ES
dc.description.references Vitor R, Keller B, D’Angelo T, Azpurua H, Bianchi AGC, Delabrida S (2019) Collaborative teleoperation evaluation for drones. In: Proceedings of the 18th Brazilian symposium on human factors in computing systems, IHC ‘19. Association for Computing Machinery, New York es_ES
dc.description.references Walker ME, Hedayati H, Szafir D (2019) Robot teleoperation with augmented reality virtual surrogates. In: 2019 14Th ACM/IEEE international conference on human-robot interaction (HRI), pp 202–210 es_ES
dc.description.references Wang D, Guo Y, Liu S, Zhang Y, Xu W, Xiao J (2019) Haptic display for virtual reality: progress and challenges. Virtual Reality & Intelligent Hardware 1(2):136–162 es_ES
dc.description.references Wei J, Ye G, Mullen T, Grundmann M, Ahmadyan A, Hou T (2019) Instant motion tracking and its applications to augmented reality es_ES
dc.description.references Wonnacott TH, Wonnacott RJ (1990) Introductory statistics for business and economics. Wiley, New York es_ES
dc.description.references Xu P, Zeng Q, Zhang G, Zhu C, Zhu Z (2019) Design of control system and human-robot-interaction system of teleoperation underwater robot. In: Yu H, Liu J, Liu L, Ju Z, Liu Y, Zhou D (eds) Intelligent robotics and applications. Springer International Publishing, Cham, pp 649–660 es_ES
dc.description.references Yew AWW, Ong SK, Nee AYC (2017) Immersive augmented reality environment for the teleoperation of maintenance robots es_ES
dc.description.references Zhao J, Allison RS (2019) Comparing head gesture, hand gesture and gamepad interfaces for answering yes/no questions in virtual environments. Virtual Reality, pp 1–9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem