- -

Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lull Noguera, Cristina es_ES
dc.contributor.author Bautista, Inmaculada es_ES
dc.contributor.author Lidón, Antonio es_ES
dc.contributor.author Campo García, Antonio Dámaso Del es_ES
dc.contributor.author González-Sanchis, María es_ES
dc.contributor.author Garcia-Prats, Alberto es_ES
dc.date.accessioned 2021-03-05T04:31:41Z
dc.date.available 2021-03-05T04:31:41Z
dc.date.issued 2020-05-15 es_ES
dc.identifier.issn 0378-1127 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163174
dc.description.abstract [EN] Soil organic carbon pools have an important role in the maintenance of ecosystems as a source of energy for soil microorganisms. Soil biological and biochemical properties are essential for the decomposition of organic matter. These soil properties can be affected by thinning, which is considered sustainable when the soil properties are maintained or improved. We studied the effects of selective thinning and shrub clearing, performed with an ecohydrological approach, in a marginal Holm oak forest in a semiarid area on soil properties. The effects of thinning (T) were compared with an untreated area (control, C). Fine woody debris was ground into mulch onto the thinned area. Forest floor and mineral soil properties were analyzed between five months and seven years after the thinning. In the forest floor, gravimetric water content (GWc(ff)) and water soluble organic carbon (WSOCff) were analyzed and compared between T and C. In mineral soil, GWC(ms), soil organic carbon (SOC), WSOCms, soil basal respiration (BR), soil microbial biomass carbon (MBC) and soil enzymes (acid phosphatase (Acid PA) and urease (URE)) were analyzed. In the early stage, the results showed slightly higher SOC and WSOms in T likely due to fine woody debris left on the forest floor. However, seven years after the thinning the effects of the thinning on all the studied variables were negligible. All variables showed high spatial-temporal variability. Our results suggest that selective thinning and shrub clearing in the studied site do not affect negatively soil properties when woody debris is left on the forest floor. es_ES
dc.description.sponsorship This study is a component of research projects: HYDROSIL (CGL2011-28776-C02-02) and SILWAMED (CGL2014-58+127-C3-2), RESILIENT-FORESTS (LIFE17 CCA/ES/000063) and CEHYRFO-MED (CGL2017-86839-C3-2-R) funded by the Spanish Ministry of Science and Innovation, and the FEDER fund and the EU. The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat Valenciana) for it supports in allowing the use of the experimental forest. We thank Joana Oliver for her laboratory and technical assistance and Dr. Rafael Herrera for valuable comments on the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Forest Ecology and Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Adaptive forest management es_ES
dc.subject Silvicultural treatments es_ES
dc.subject Quercus ilex es_ES
dc.subject Woody debris es_ES
dc.subject Organic carbon pools es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.title Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.foreco.2020.118088 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2011-28776-C02-02/ES/CARACTERIZACION HIDROLOGICA DE LA ESTRUCTURA FORESTAL A ESCALA PARCELA PARA LA IMPLEMENTACION DE SILVICULTURA ADAPTATIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//LIFE17 CCA%2FES%2F000063/EU/Coupling water, fire and climate resilience with biomass production in Forestry to adapt watersheds to climate change/LIFE RESILIENT FORESTS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-2-R/ES/DESARROLLO DE CONCEPTOS Y CRITERIOS PARA UNA GESTION FORESTAL DE BASE ECO-HIDROLOGICA COMO MEDIDA DE ADAPTACION AL CAMBIO GLOBAL (SILWAMED)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2017-86839-C3-2-R/ES/INCORPORACION DE CRITERIOS ECO-HIDROLOGICOS Y DE RESILIENCIA FRENTE A PERTURBACIONES CLIMATICAS Y DEL FUEGO EN LA PLANIFICACION Y GESTION FORESTAL DE CUENCAS MEDITERRANEAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Lull Noguera, C.; Bautista, I.; Lidón, A.; Campo García, ADD.; González-Sanchis, M.; Garcia-Prats, A. (2020). Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest. Forest Ecology and Management. 464:1-10. https://doi.org/10.1016/j.foreco.2020.118088 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.foreco.2020.118088 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 464 es_ES
dc.relation.pasarela S\405981 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Adamczyk, B., Adamczyk, S., Kukkola, M., Tamminen, P., & Smolander, A. (2015). Logging residue harvest may decrease enzymatic activity of boreal forest soils. Soil Biology and Biochemistry, 82, 74-80. doi:10.1016/j.soilbio.2014.12.017 es_ES
dc.description.references Allison, S. D., & Vitousek, P. M. (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 37(5), 937-944. doi:10.1016/j.soilbio.2004.09.014 es_ES
dc.description.references Bastida, F., Moreno, J. L., Hernández, T., & García, C. (2007). The long-term effects of the management of a forest soil on its carbon content, microbial biomass and activity under a semi-arid climate. Applied Soil Ecology, 37(1-2), 53-62. doi:10.1016/j.apsoil.2007.03.010 es_ES
dc.description.references Bastida, F., López-Mondéjar, R., Baldrian, P., Andrés-Abellán, M., Jehmlich, N., Torres, I. F., … López-Serrano, F. R. (2019). When drought meets forest management: Effects on the soil microbial community of a Holm oak forest ecosystem. Science of The Total Environment, 662, 276-286. doi:10.1016/j.scitotenv.2019.01.233 es_ES
dc.description.references Bolat, İ. (2013). The effect of thinning on microbial biomass C, N and basal respiration in black pine forest soils in Mudurnu, Turkey. European Journal of Forest Research, 133(1), 131-139. doi:10.1007/s10342-013-0752-8 es_ES
dc.description.references Boyer, J. N., & Groffman, P. M. (1996). Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. Soil Biology and Biochemistry, 28(6), 783-790. doi:10.1016/0038-0717(96)00015-6 es_ES
dc.description.references Cabon, A., Mouillot, F., Lempereur, M., Ourcival, J.-M., Simioni, G., & Limousin, J.-M. (2018). Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. Forest Ecology and Management, 409, 333-342. doi:10.1016/j.foreco.2017.11.030 es_ES
dc.description.references Chen, X., Chen, H. Y. H., Chen, X., Wang, J., Chen, B., Wang, D., & Guan, Q. (2016). Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations. Applied Soil Ecology, 107, 162-169. doi:10.1016/j.apsoil.2016.05.016 es_ES
dc.description.references Cheng, X., Yu, M., & Wang, G. (2017). Effects of Thinning on Soil Organic Carbon Fractions and Soil Properties in Cunninghamia lanceolata Stands in Eastern China. Forests, 8(6), 198. doi:10.3390/f8060198 es_ES
dc.description.references Creamer, R. E., Schulte, R. P. O., Stone, D., Gal, A., Krogh, P. H., Lo Papa, G., … Winding, A. (2014). Measuring basal soil respiration across Europe: Do incubation temperature and incubation period matter? Ecological Indicators, 36, 409-418. doi:10.1016/j.ecolind.2013.08.015 es_ES
dc.description.references De Moraes Sá, J. C., Potma Gonçalves, D. R., Ferreira, L. A., Mishra, U., Inagaki, T. M., Ferreira Furlan, F. J., … de Oliveira Ferreira, A. (2018). Soil carbon fractions and biological activity based indices can be used to study the impact of land management and ecological successions. Ecological Indicators, 84, 96-105. doi:10.1016/j.ecolind.2017.08.029 es_ES
dc.description.references Del Campo, A. D., González-Sanchis, M., Lidón, A., Ceacero, C. J., & García-Prats, A. (2018). Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. Journal of Hydrology, 565, 74-86. doi:10.1016/j.jhydrol.2018.08.013 es_ES
dc.description.references Del Campo, A. D., González-Sanchis, M., García-Prats, A., Ceacero, C. J., & Lull, C. (2019). The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agricultural and Forest Meteorology, 264, 266-282. doi:10.1016/j.agrformet.2018.10.016 es_ES
dc.description.references Di Prima, S., Bagarello, V., Angulo-Jaramillo, R., Bautista, I., Cerdà, A., del Campo, A., … Maetzke, F. (2017). Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration. Journal of Hydrology and Hydromechanics, 65(3), 276-286. doi:10.1515/johh-2017-0016 es_ES
dc.description.references Ducrey, M., 1992. Quelle sylviculture et quel avenir pour les taillis de chêne vert (Quercus ilex L.) de la Région méditerranéenne française. Revue forestière française 10.4267/2042/26291. es_ES
dc.description.references Fernández-Alonso, M. J., Curiel Yuste, J., Kitzler, B., Ortiz, C., & Rubio, A. (2018). Changes in litter chemistry associated with global change-driven forest succession resulted in time-decoupled responses of soil carbon and nitrogen cycles. Soil Biology and Biochemistry, 120, 200-211. doi:10.1016/j.soilbio.2018.02.013 es_ES
dc.description.references Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579-590. doi:10.1038/nrmicro.2017.87 es_ES
dc.description.references Flores-Rentería, D., Curiel Yuste, J., Rincón, A., Brearley, F. Q., García-Gil, J. C., & Valladares, F. (2015). Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests. Microbial Ecology, 69(4), 798-812. doi:10.1007/s00248-015-0584-9 es_ES
dc.description.references Fröberg, M., Jardine, P. M., Hanson, P. J., Swanston, C. W., Todd, D. E., Tarver, J. R., & Garten, C. T. (2007). Low Dissolved Organic Carbon Input from Fresh Litter to Deep Mineral Soils. Soil Science Society of America Journal, 71(2), 347-354. doi:10.2136/sssaj2006.0188 es_ES
dc.description.references Garcia-Prats, A., González-Sanchis, M., Del Campo, A. D., & Lull, C. (2018). Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks. Science of The Total Environment, 639, 725-741. doi:10.1016/j.scitotenv.2018.05.134 es_ES
dc.description.references Geng, Y., Dighton, J., & Gray, D. (2012). The effects of thinning and soil disturbance on enzyme activities under pitch pine soil in New Jersey Pinelands. Applied Soil Ecology, 62, 1-7. doi:10.1016/j.apsoil.2012.07.001 es_ES
dc.description.references Gliksman, D., Haenel, S., Osem, Y., Yakir, D., Zangy, E., Preisler, Y., & Grünzweig, J. M. (2017). Litter decomposition in Mediterranean pine forests is enhanced by reduced canopy cover. Plant and Soil, 422(1-2), 317-329. doi:10.1007/s11104-017-3366-y es_ES
dc.description.references Grosso, F., Iovieno, P., Alfani, A., & De Nicola, F. (2018). Structure and activity of soil microbial communities in three Mediterranean forests. Applied Soil Ecology, 130, 280-287. doi:10.1016/j.apsoil.2018.07.007 es_ES
dc.description.references Hedo de Santiago, J., Lucas-Borja, M. E., Wic-Baena, C., Andrés-Abellán, M., & de las Heras, J. (2015). Effects of Thinning and Induced Drought on Microbiological Soil Properties and Plant Species Diversity at Dry and Semiarid Locations. Land Degradation & Development, 27(4), 1151-1162. doi:10.1002/ldr.2361 es_ES
dc.description.references Huang, W. Z., & Schoenau, J. J. (1996). Distribution of water-soluble organic carbon in an aspen forest soil. Canadian Journal of Forest Research, 26(7), 1266-1272. doi:10.1139/x26-141 es_ES
dc.description.references Huang, J., Ji, M., Xie, Y., Wang, S., He, Y., & Ran, J. (2015). Global semi-arid climate change over last 60 years. Climate Dynamics, 46(3-4), 1131-1150. doi:10.1007/s00382-015-2636-8 es_ES
dc.description.references Hytönen, J., & Moilanen, M. (2014). Effect of harvesting method on the amount of logging residues in the thinning of Scots pine stands. Biomass and Bioenergy, 67, 347-353. doi:10.1016/j.biombioe.2014.05.004 es_ES
dc.description.references Jandl, R., Spathelf, P., Bolte, A., & Prescott, C. E. (2019). Forest adaptation to climate change—is non-management an option? Annals of Forest Science, 76(2). doi:10.1007/s13595-019-0827-x es_ES
dc.description.references JIANG, P.-K., & XU, Q.-F. (2006). Abundance and Dynamics of Soil Labile Carbon Pools Under Different Types of Forest Vegetation. Pedosphere, 16(4), 505-511. doi:10.1016/s1002-0160(06)60081-7 es_ES
dc.description.references Johnson, D. W., & Todd, D. E. (1998). Harvesting Effects on Long-Term Changes in Nutrient Pools of Mixed Oak Forest. Soil Science Society of America Journal, 62(6), 1725-1735. doi:10.2136/sssaj1998.03615995006200060034x es_ES
dc.description.references Johnson, D. W., & Curtis, P. S. (2001). Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management, 140(2-3), 227-238. doi:10.1016/s0378-1127(00)00282-6 es_ES
dc.description.references Kim, C., Son, Y., Lee, W.-K., Jeong, J., & Noh, N.-J. (2009). Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. Forest Ecology and Management, 257(5), 1420-1426. doi:10.1016/j.foreco.2008.12.015 es_ES
dc.description.references Kim, S., Han, S. H., Li, G., Yoon, T. K., Lee, S.-T., Kim, C., & Son, Y. (2016). Effects of thinning intensity on nutrient concentration and enzyme activity in Larix kaempferi forest soils. Journal of Ecology and Environment, 40(1). doi:10.1186/s41610-016-0007-y es_ES
dc.description.references Kim, S., Li, G., Han, S. H., Kim, H.-J., Kim, C., Lee, S.-T., & Son, Y. (2018). Thinning affects microbial biomass without changing enzyme activity in the soil of Pinus densiflora Sieb. et Zucc. forests after 7 years. Annals of Forest Science, 75(1). doi:10.1007/s13595-018-0690-1 es_ES
dc.description.references Kim, S., Li, G., Han, S. H., Kim, C., Lee, S.-T., & Son, Y. (2019). Microbial biomass and enzymatic responses to temperate oak and larch forest thinning: Influential factors for the site-specific changes. Science of The Total Environment, 651, 2068-2079. doi:10.1016/j.scitotenv.2018.10.153 es_ES
dc.description.references Lee, S.-H., Kim, S., & Kim, H.-J. (2017). Effects of thinning intensity on understory vegetation inChamaecyparis obtusastands in South Korea. Forest Science and Technology, 14(1), 7-15. doi:10.1080/21580103.2017.1409661 es_ES
dc.description.references Leinemann, T., Preusser, S., Mikutta, R., Kalbitz, K., Cerli, C., Höschen, C., … Guggenberger, G. (2018). Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter through soil profiles. Soil Biology and Biochemistry, 118, 79-90. doi:10.1016/j.soilbio.2017.12.006 es_ES
dc.description.references Li, Y., Zhang, J., Chang, S. X., Jiang, P., Zhou, G., Fu, S., … Lin, L. (2013). Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China. Forest Ecology and Management, 303, 121-130. doi:10.1016/j.foreco.2013.04.021 es_ES
dc.description.references López-Serrano, F. R., Rubio, E., Dadi, T., Moya, D., Andrés-Abellán, M., García-Morote, F. A., … Martínez-García, E. (2016). Influences of recovery from wildfire and thinning on soil respiration of a Mediterranean mixed forest. Science of The Total Environment, 573, 1217-1231. doi:10.1016/j.scitotenv.2016.03.242 es_ES
dc.description.references Michalzik, B., Kalbitz, K., Park, J.-H., Solinger, S., & Matzner, E. (2001). Biogeochemistry, 52(2), 173-205. doi:10.1023/a:1006441620810 es_ES
dc.description.references Nannipieri, P., Ceccanti, B., Cervelli, S., & Matarese, E. (1980). Extraction of Phosphatase, Urease, Proteases, Organic Carbon, and Nitrogen from Soil. Soil Science Society of America Journal, 44(5), 1011-1016. doi:10.2136/sssaj1980.03615995004400050028x es_ES
dc.description.references Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5), 857-866. doi:10.1016/j.foreco.2009.12.009 es_ES
dc.description.references Ntoko, F. A., Gardner, T. G., Senwo, Z. N., & Acosta-Martinez, V. (2018). Microbial Compositions and Enzymes of a Forest Ecosystem in Alabama: Initial Response to Thinning and Burning Management Selections. Open Journal of Forestry, 08(03), 328-343. doi:10.4236/ojf.2018.83021 es_ES
dc.description.references Qing-kui, W., Si-long, W., & Shi-jian, D. (2005). Comparative study on active soil organic matter in Chinese fir plantation and native broad-leaved forest in subtropical China. Journal of Forestry Research, 16(1), 23-26. doi:10.1007/bf02856848 es_ES
dc.description.references Sall, S. N., & Chotte, J.-L. (2002). PHOSPHATASE AND UREASE ACTIVITIES IN A TROPICAL SANDY SOIL AS AFFECTED BY SOIL WATER-HOLDING CAPACITY AND ASSAY CONDITIONS. Communications in Soil Science and Plant Analysis, 33(19-20), 3745-3755. doi:10.1081/css-120015919 es_ES
dc.description.references Sardans, J., & Peñuelas, J. (2005). Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biology and Biochemistry, 37(3), 455-461. doi:10.1016/j.soilbio.2004.08.004 es_ES
dc.description.references SCAGLIA, B., & ADANI, F. (2009). Biodegradability of soil water soluble organic carbon extracted from seven different soils. Journal of Environmental Sciences, 21(5), 641-646. doi:10.1016/s1001-0742(08)62319-0 es_ES
dc.description.references Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., … Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56. doi:10.1038/nature10386 es_ES
dc.description.references Shi, B., Zhang, J., Wang, C., Ma, J., & Sun, W. (2018). Responses of hydrolytic enzyme activities in saline-alkaline soil to mixed inorganic and organic nitrogen addition. Scientific Reports, 8(1). doi:10.1038/s41598-018-22813-9 es_ES
dc.description.references Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., … Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11(11), 1252-1264. doi:10.1111/j.1461-0248.2008.01245.x es_ES
dc.description.references Son, Y., Jun, Y. C., Lee, Y. Y., Kim, R. H., & Yang, S. Y. (2004). Soil Carbon Dioxide Evolution, Litter Decomposition, and Nitrogen Availability Four Years after Thinning in a Japanese Larch Plantation. Communications in Soil Science and Plant Analysis, 35(7-8), 1111-1122. doi:10.1081/css-120030593 es_ES
dc.description.references Sparling, G. (1992). Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Research, 30(2), 195. doi:10.1071/sr9920195 es_ES
dc.description.references Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301-307. doi:10.1016/0038-0717(69)90012-1 es_ES
dc.description.references Trasar-Cepeda, C., Leirós, M. C., & Gil-Sotres, F. (2008). Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biology and Biochemistry, 40(9), 2146-2155. doi:10.1016/j.soilbio.2008.03.015 es_ES
dc.description.references Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703-707. doi:10.1016/0038-0717(87)90052-6 es_ES
dc.description.references WALKLEY, A., & BLACK, I. A. (1934). AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Science, 37(1), 29-38. doi:10.1097/00010694-193401000-00003 es_ES
dc.description.references Wan, X., Xiao, L., Vadeboncoeur, M. A., Johnson, C. E., & Huang, Z. (2018). Response of mineral soil carbon storage to harvest residue retention depends on soil texture: A meta-analysis. Forest Ecology and Management, 408, 9-15. doi:10.1016/j.foreco.2017.10.028 es_ES
dc.description.references Wang, Q., Xiao, F., Zhang, F., & Wang, S. (2013). Labile soil organic carbon and microbial activity in three subtropical plantations. Forestry, 86(5), 569-574. doi:10.1093/forestry/cpt024 es_ES
dc.description.references Wic Baena, C., Andrés-Abellán, M., Lucas-Borja, M. E., Martínez-García, E., García-Morote, F. A., Rubio, E., & López-Serrano, F. R. (2013). Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain). Forest Ecology and Management, 308, 223-230. doi:10.1016/j.foreco.2013.06.065 es_ES
dc.description.references Yakovchenko, V. P., & Sikora, L. J. (1998). Modified dichromate method for determining low concentrations of extractable organic carbon in soil. Communications in Soil Science and Plant Analysis, 29(3-4), 421-433. doi:10.1080/00103629809369955 es_ES
dc.description.references Yang, A.-R., Son, Y., Noh, N. J., Lee, S. K., Jo, W., Son, J.-A., … Hwang, J. (2011). Effect of thinning on carbon storage in soil, forest floor and coarse woody debris ofPinus densiflorastands with different stand ages in Gangwon-do, central Korea. Forest Science and Technology, 7(1), 30-37. doi:10.1080/21580103.2011.559936 es_ES
dc.description.references Zhang, X., Guan, D., Li, W., Sun, D., Jin, C., Yuan, F., … Wu, J. (2018). The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis. Forest Ecology and Management, 429, 36-43. doi:10.1016/j.foreco.2018.06.027 es_ES
dc.description.references Zhao, B., Cao, J., Geng, Y., Zhao, X., & von Gadow, K. (2019). Inconsistent responses of soil respiration and its components to thinning intensity in a Pinus tabuliformis plantation in northern China. Agricultural and Forest Meteorology, 265, 370-380. doi:10.1016/j.agrformet.2018.11.034 es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem