- -

Hydropower generation in future climate scenarios

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydropower generation in future climate scenarios

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hidalgo, Ieda Geriberto es_ES
dc.contributor.author Paredes Arquiola, Javier es_ES
dc.contributor.author Andreu Álvarez, Joaquín es_ES
dc.contributor.author Lerma-Elvira, Nestor es_ES
dc.contributor.author Lopes, Joao Eduardo Goncalves es_ES
dc.contributor.author Cioffi, Francesco es_ES
dc.date.accessioned 2021-03-05T04:32:40Z
dc.date.available 2021-03-05T04:32:40Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163194
dc.description.abstract [EN] Knowledge on the effects of climate change in a system can contribute to the better management of its water and energy resources. This study evaluates the consequences of alterations in the rainfall and temperature patterns for a hydroelectric plant. The methodology adopted consists of four steps. First, a hydrological model is developed for the chosen basin following a semi-distributed and conceptual approach. The hydrological model is calibrated utilizing the optimization algorithm Shuffled Complex Evolution University of Arizona (SCE-UA) and then validated. Secondly, a hydropower model is developed fora hydroelectric plant of the chosen basin. The hydropower model is adjusted to the physical characteristics of the plant. Thirdly, future climate scenarios are extracted from the literature for the studied area. These scenarios include quantitative and seasonal climate variations, as well as different initial reservoir levels. Fourth, the hydrological-hydropower model is simulated for 52 scenarios and the impact of changes in the rainfall and temperature patterns for hydropower generation is evaluated. For each scenario, the water storage in the reservoir and energy produced by the plant are analyzed. The financial impact for extreme scenarios is presented. The methodology is applied to the Tres Marias hydroelectric plant at the upper SAo Francisco river basin (Brazil) and it can be replicated to any other hydropower system. The results show that extreme positive values predicted for rainfall will likely not cause issues to the plant, considering a moderate rise in temperature. However, negative predictions for rainfall, regardless of changes in temperature, should be an alert to the authorities responsible for water and energy resources management. es_ES
dc.description.sponsorship This study was funded by the Sao Paulo Research Foundation (FAPESP -grant #2018-00016-8), European Commission (EBW+ program), and National Council for Scientific and Technological Development (CNPq). The authors thank Companhia Energetica de Minas Gerais S.A. (CEMIG), Agencia Nacional de Aguas (ANA), Instituto Nacional de Meteorologia (INMET), and Camara de Comercializacao de Energia Eletrica (CCEE) for kindly providing the data needed to carry out this research. The authors also thank the developers of RS Minerve, computational tool utilized in this research, and Espaco da Escrita -Pro-Reitoria de Pesquisa (PRP/UNICAMP), for the language services provided. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy for Sustainable Development es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hydroelectric plants es_ES
dc.subject Water resources es_ES
dc.subject Energy resources es_ES
dc.subject Hydrological model es_ES
dc.subject Hydropower model es_ES
dc.subject Climate variations es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Hydropower generation in future climate scenarios es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.esd.2020.10.007 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2018-00016-8/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Hidalgo, IG.; Paredes Arquiola, J.; Andreu Álvarez, J.; Lerma-Elvira, N.; Lopes, JEG.; Cioffi, F. (2020). Hydropower generation in future climate scenarios. Energy for Sustainable Development. 59:180-188. https://doi.org/10.1016/j.esd.2020.10.007 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.esd.2020.10.007 es_ES
dc.description.upvformatpinicio 180 es_ES
dc.description.upvformatpfin 188 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.identifier.eissn 0973-0826 es_ES
dc.relation.pasarela S\421460 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Boehlert, B., Strzepek, K. M., Gebretsadik, Y., Swanson, R., McCluskey, A., Neumann, J. E., … Martinich, J. (2016). Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation. Applied Energy, 183, 1511-1519. doi:10.1016/j.apenergy.2016.09.054 es_ES
dc.description.references Caruso, B. S., King, R., Newton, S., & Zammit, C. (2016). Simulation of Climate Change Effects on Hydropower Operations in Mountain Headwater Lakes, New Zealand. River Research and Applications, 33(1), 147-161. doi:10.1002/rra.3056 es_ES
dc.description.references Gaudard, L., Gabbi, J., Bauder, A., & Romerio, F. (2016). Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices. Water Resources Management, 30(4), 1325-1343. doi:10.1007/s11269-015-1216-3 es_ES
dc.description.references Gaudard, L., Romerio, F., Dalla Valle, F., Gorret, R., Maran, S., Ravazzani, G., … Volonterio, M. (2014). Climate change impacts on hydropower in the Swiss and Italian Alps. Science of The Total Environment, 493, 1211-1221. doi:10.1016/j.scitotenv.2013.10.012 es_ES
dc.description.references Gebre, S., Boissy, T., & Alfredsen, K. (2014). Sensitivity to climate change of the thermal structure and ice cover regime of three hydropower reservoirs. Journal of Hydrology, 510, 208-227. doi:10.1016/j.jhydrol.2013.12.023 es_ES
dc.description.references Haguma, D., Leconte, R., Côté, P., Krau, S., & Brissette, F. (2014). Optimal Hydropower Generation Under Climate Change Conditions for a Northern Water Resources System. Water Resources Management, 28(13), 4631-4644. doi:10.1007/s11269-014-0763-3 es_ES
dc.description.references Harrison, G. P., Whittington, H. W., & Wallace, A. R. (2003). Climate change impacts on financial risk in hydropower projects. IEEE Transactions on Power Systems, 18(4), 1324-1330. doi:10.1109/tpwrs.2003.818590 es_ES
dc.description.references Hidalgo, I. G., Fontane, D. G., Soares F., S., Cicogna, M. A., & Lopes, J. E. G. (2010). Data Consolidation from Hydroelectric Plants. Journal of Energy Engineering, 136(3), 87-94. doi:10.1061/(asce)ey.1943-7897.0000024 es_ES
dc.description.references Jahandideh-Tehrani, M., Bozorg Haddad, O., & Loáiciga, H. A. (2014). Hydropower Reservoir Management Under Climate Change: The Karoon Reservoir System. Water Resources Management, 29(3), 749-770. doi:10.1007/s11269-014-0840-7 es_ES
dc.description.references Liu, X., Tang, Q., Voisin, N., & Cui, H. (2016). Projected impacts of climate change on hydropower potential in China. Hydrology and Earth System Sciences, 20(8), 3343-3359. doi:10.5194/hess-20-3343-2016 es_ES
dc.description.references Lobanova, A., Koch, H., Liersch, S., Hattermann, F. F., & Krysanova, V. (2016). Impacts of changing climate on the hydrology and hydropower production of the Tagus River basin. Hydrological Processes, 30(26), 5039-5052. doi:10.1002/hyp.10966 es_ES
dc.description.references Lumbroso, D. M., Woolhouse, G., & Jones, L. (2015). A review of the consideration of climate change in the planning of hydropower schemes in sub-Saharan Africa. Climatic Change, 133(4), 621-633. doi:10.1007/s10584-015-1492-1 es_ES
dc.description.references Madani, K., Guégan, M., & Uvo, C. B. (2014). Climate change impacts on high-elevation hydroelectricity in California. Journal of Hydrology, 510, 153-163. doi:10.1016/j.jhydrol.2013.12.001 es_ES
dc.description.references Maran, S., Volonterio, M., & Gaudard, L. (2014). Climate change impacts on hydropower in an alpine catchment. Environmental Science & Policy, 43, 15-25. doi:10.1016/j.envsci.2013.12.001 es_ES
dc.description.references Park, J. Y., & Kim, S. J. (2014). Potential Impacts of Climate Change on the Reliability of Water and Hydropower Supply from a Multipurpose Dam in South Korea. JAWRA Journal of the American Water Resources Association, 50(5), 1273-1288. doi:10.1111/jawr.12190 es_ES
dc.description.references Sample, J. E., Duncan, N., Ferguson, M., & Cooksley, S. (2015). Scotland׳s hydropower: Current capacity, future potential and the possible impacts of climate change. Renewable and Sustainable Energy Reviews, 52, 111-122. doi:10.1016/j.rser.2015.07.071 es_ES
dc.description.references Sánchez, A., & Izzo, M. (2016). Micro hydropower: an alternative for climate change mitigation, adaptation, and development of marginalized local communities in Hispaniola Island. Climatic Change, 140(1), 79-87. doi:10.1007/s10584-016-1865-0 es_ES
dc.description.references Shrestha, S., Bajracharya, A. R., & Babel, M. S. (2016). Assessment of risks due to climate change for the Upper Tamakoshi Hydropower Project in Nepal. Climate Risk Management, 14, 27-41. doi:10.1016/j.crm.2016.08.002 es_ES
dc.description.references Spalding-Fecher, R., Joyce, B., & Winkler, H. (2017). Climate change and hydropower in the Southern African Power Pool and Zambezi River Basin: System-wide impacts and policy implications. Energy Policy, 103, 84-97. doi:10.1016/j.enpol.2016.12.009 es_ES
dc.description.references Tarroja, B., AghaKouchak, A., & Samuelsen, S. (2016). Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation. Energy, 111, 295-305. doi:10.1016/j.energy.2016.05.131 es_ES
dc.description.references Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55. doi:10.2307/210739 es_ES
dc.description.references Timalsina, N. P., Alfredsen, K. T., & Killingtveit, Å. (2015). Impact of climate change on ice regime in a river regulated for hydropower. Canadian Journal of Civil Engineering, 42(9), 634-644. doi:10.1139/cjce-2014-0261 es_ES
dc.description.references Tobin, C., Nicotina, L., Parlange, M. B., Berne, A., & Rinaldo, A. (2011). Improved interpolation of meteorological forcings for hydrologic applications in a Swiss Alpine region. Journal of Hydrology, 401(1-2), 77-89. doi:10.1016/j.jhydrol.2011.02.010 es_ES
dc.description.references Wang, B., Liang, X.-J., Zhang, H., Wang, L., & Wei, Y.-M. (2014). Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model. Energy Policy, 65, 701-707. doi:10.1016/j.enpol.2013.10.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem