- -

Incomplete Mixing Model at Cross-Junctions in Epanet by Polynomial Equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Incomplete Mixing Model at Cross-Junctions in Epanet by Polynomial Equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández Cervantes, Daniel es_ES
dc.contributor.author López Jiménez, Petra Amparo es_ES
dc.contributor.author Arciniega Nevárez, José Antonio es_ES
dc.contributor.author Delgado Galván, Xitlali es_ES
dc.contributor.author Jiménez Magaña, Martín Rubén es_ES
dc.contributor.author Pérez-Sánchez, Modesto es_ES
dc.contributor.author Mora Rodríguez, José de Jesús es_ES
dc.date.accessioned 2021-03-06T04:31:41Z
dc.date.available 2021-03-06T04:31:41Z
dc.date.issued 2021-02-09 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163282
dc.description.abstract [EN] In Water Distribution Networks (WDN), the water quality could become vulnerable due to several operational and temporal factors. Epanet is a hydraulic and water quality simulation software, widely used, to preserve the control of chemical disinfectants in WDN among other capabilities. Several researchers have shown that the flow mixing at Cross-Junctions (CJs) is not complete as Epanet assumes for the cases of two contiguous inlets and outlets. This paper presents a methodology to obtain the outlet concentrations in CJs based on experimental scenarios and a validated Computational Fluid Dynamics (CFD) model. In this work, the results show that the Incomplete Mixing Model (IMM) based on polynomial equations, represents in a better way the experimental scenarios. Therefore, the distribution of the concentration could be in different proportions in some sectors of the network. Some comparisons were made with the complete mixing model and the Epanet-Bulk Advective Mixing (BAM), obtaining relative errors of 90% in some CJs. es_ES
dc.description.sponsorship To CONACYT for the scholarship of the first author Daniel Hernández; to Rubén Martínez, laboratory technician of the Universidad de Guanajuato, and to PROMEP projects of authors Jesús Mora, Xitlali Delgado, and Antonio Arciniega. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Water quality es_ES
dc.subject Water distribution networks es_ES
dc.subject Computational fluid dynamics es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Incomplete Mixing Model at Cross-Junctions in Epanet by Polynomial Equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w13040453 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Hernández Cervantes, D.; López Jiménez, PA.; Arciniega Nevárez, JA.; Delgado Galván, X.; Jiménez Magaña, MR.; Pérez-Sánchez, M.; Mora Rodríguez, JDJ. (2021). Incomplete Mixing Model at Cross-Junctions in Epanet by Polynomial Equations. Water. 13(4):1-20. https://doi.org/10.3390/w13040453 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w13040453 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\427823 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Knobelsdorf Miranda, J., & Mujeriego Sahuquillo, R. (1997). Crecimiento bacteriano en las redes de distribución de agua potable: una revisión bibliográfica. Ingeniería del agua, 4(2). doi:10.4995/ia.1997.2719 es_ES
dc.description.references Grbčić, L., Kranjčević, L., Lučin, I., & Sikirica, A. (2021). Large Eddy Simulation of turbulent fluid mixing in double-tee junctions. Ain Shams Engineering Journal, 12(1), 789-797. doi:10.1016/j.asej.2020.06.004 es_ES
dc.description.references Hernández-Cervantes, D., Delgado-Galván, X., Nava, J., López-Jiménez, P., Rosales, M., & Mora Rodríguez, J. (2018). Validation of a Computational Fluid Dynamics Model for a Novel Residence Time Distribution Analysis in Mixing at Cross-Junctions. Water, 10(6), 733. doi:10.3390/w10060733 es_ES
dc.description.references Mompremier, R., Pelletier, G., Fuentes Mariles, Ó. A., & Ghebremichael, K. (2015). Impact of incomplete mixing in the prediction of chlorine residuals in municipal water distribution systems. Journal of Water Supply: Research and Technology - Aqua, 64(8), 904-914. doi:10.2166/aqua.2015.148 es_ES
dc.description.references Shao, Y., Jeffrey Yang, Y., Jiang, L., Yu, T., & Shen, C. (2014). Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions. Water Research, 56, 133-147. doi:10.1016/j.watres.2014.02.053 es_ES
dc.description.references Paez, N., Saldarriaga, J., & Bohorquez, J. (2017). Water Quality Modeling Considering Incomplete Mixing in Extended Periods. Procedia Engineering, 186, 54-60. doi:10.1016/j.proeng.2017.03.207 es_ES
dc.description.references Ho, C. K. (2008). Solute Mixing Models for Water-Distribution Pipe Networks. Journal of Hydraulic Engineering, 134(9), 1236-1244. doi:10.1061/(asce)0733-9429(2008)134:9(1236) es_ES
dc.description.references Yu, T. C., Shao, Y., & Shen, C. (2014). Mixing at Cross Joints with Different Pipe Sizes in Water Distribution Systems. Journal of Water Resources Planning and Management, 140(5), 658-665. doi:10.1061/(asce)wr.1943-5452.0000372 es_ES
dc.description.references Shao, Y., Zhao, L., Yang, Y. J., Zhang, T., & Ye, M. (2019). Experimentally Determined Solute Mixing under Laminar and Transitional Flows at Junctions in Water Distribution Systems. Advances in Civil Engineering, 2019, 1-10. doi:10.1155/2019/3686510 es_ES
dc.description.references Austin, R. G., Waanders, B. van B., McKenna, S., & Choi, C. Y. (2008). Mixing at Cross Junctions in Water Distribution Systems. II: Experimental Study. Journal of Water Resources Planning and Management, 134(3), 295-302. doi:10.1061/(asce)0733-9496(2008)134:3(295) es_ES
dc.description.references Song, I., Romero-Gomez, P., & Choi, C. Y. (2009). Experimental Verification of Incomplete Solute Mixing in a Pressurized Pipe Network with Multiple Cross Junctions. Journal of Hydraulic Engineering, 135(11), 1005-1011. doi:10.1061/(asce)hy.1943-7900.0000095 es_ES
dc.description.references Romero-Gomez, P., Choi, C. Y., van Bloemen Waanders, B., & McKenna, S. (2008). Transport Phenomena at Intersections of Pressurized Pipe Systems. Water Distribution Systems Analysis Symposium 2006. doi:10.1061/40941(247)155 es_ES
dc.description.references Romero-Gomez, P., Ho, C. K., & Choi, C. Y. (2008). Mixing at Cross Junctions in Water Distribution Systems. I: Numerical Study. Journal of Water Resources Planning and Management, 134(3), 285-294. doi:10.1061/(asce)0733-9496(2008)134:3(285) es_ES
dc.description.references Ho, C. K., & O’Rear, L. (2009). Evaluation of solute mixing in water distribution pipe junctions. Journal - American Water Works Association, 101(9), 116-127. doi:10.1002/j.1551-8833.2009.tb09964.x es_ES
dc.description.references Andrade, M. A., Rojano, F., Romero-Gomez, P., & Choi, C. Y. (2011). Integrated Water Quality Modeling of Water Distribution Systems. Water Distribution Systems Analysis 2010. doi:10.1061/41203(425)63 es_ES
dc.description.references Hernández Cervantes, D., Mora Rodríguez, J., Delgado Galván, X., Ortiz Medel, J., & Jiménez Magaña, M. R. (2015). Optimal use of chlorine in water distribution networks based on specific locations of booster chlorination: analyzing conditions in Mexico. Water Supply, 16(2), 493-505. doi:10.2166/ws.2015.161 es_ES
dc.description.references Boccelli, D. L., Tryby, M. E., Uber, J. G., & Summers, R. S. (2003). A reactive species model for chlorine decay and THM formation under rechlorination conditions. Water Research, 37(11), 2654-2666. doi:10.1016/s0043-1354(03)00067-8 es_ES
dc.description.references Jabari Kohpaei, A., & Sathasivan, A. (2011). Chlorine decay prediction in bulk water using the parallel second order model: An analytical solution development. Chemical Engineering Journal, 171(1), 232-241. doi:10.1016/j.cej.2011.03.034 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem