- -

Optimising data diffusion while reducing local resources consumption in Opportunistic Mobile Crowdsensing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimising data diffusion while reducing local resources consumption in Opportunistic Mobile Crowdsensing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández-Orallo, Enrique es_ES
dc.contributor.author Borrego, Carlos es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.contributor.author Marquez Barja, Johann M. es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.date.accessioned 2021-03-09T04:32:13Z
dc.date.available 2021-03-09T04:32:13Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 1574-1192 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163480
dc.description.abstract [EN] The combination of Mobile Crowdsensing (MCS) with Opportunistic Networking (Opp-Net) allows mobile users to share sensed data easily and conveniently without the use of fixed infrastructure. OppNet is based on intermittent connectivity among wireless mobile devices, in which mobile nodes may store, carry and forward messages (sensing information) by taking advantage of wireless ad hoc communication opportunities. A common approach for the diffusion of this sensing data in OppNet is the epidemic protocol, which carries out a fast data diffusion at the expense of increasing the usage of local buffers on mobile nodes and also the number of transmissions, thereby limiting scalability. A way to reduce this consumption of local resources is to set a message expiration time that forces the removal of old messages from local buffers. Since dropping messages too early may reduce the speed of information diffusion, we propose a dynamic expiration time setting to limit this effect. Moreover, we introduce an epidemic diffusion model for evaluating the impact of the expiration time. This model allows us to obtain optimal expiration times that achieve performances similar to those other approaches where no expiration is considered, with a significant reduction of local buffer and network usage. Furthermore, in our proposed model, the buffer utilisation remains steady with the number of nodes, whereas in other approaches it increases sharply. Finally, our approach is evaluated and validated in a mobile crowdsensing scenario, where students collect and broadcast information regarding a university campus, showing a significant reduction on buffer usage and nodes message transmissions, and therefore, decreasing battery consumption. es_ES
dc.description.sponsorship This work was partially supported by the Ministerio de Ciencia, Innovación y Universidades, Spain, under Grant RTI2018- 096384-B-I00. Also, this work has been partially performed in the framework of the European Union¿s Horizon 2020 project 5G-CARMEN co-funded by the EU under grant agreement No. 825012. The views expressed are those of the authors and do not necessarily represent the project. The Commission is not liable for any use that may be made of any of the information contained therein. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Pervasive and Mobile Computing es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Mobile crowdsensing es_ES
dc.subject Opportunistic networking es_ES
dc.subject Epidemic diffusion es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Optimising data diffusion while reducing local resources consumption in Opportunistic Mobile Crowdsensing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.pmcj.2020.101201 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/825012/EU/5G for Connected and Automated Road Mobility in the European UnioN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Hernández-Orallo, E.; Borrego, C.; Manzoni, P.; Marquez Barja, JM.; Cano, J.; Tavares De Araujo Cesariny Calafate, CM. (2020). Optimising data diffusion while reducing local resources consumption in Opportunistic Mobile Crowdsensing. Pervasive and Mobile Computing. 67:1-18. https://doi.org/10.1016/j.pmcj.2020.101201 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.pmcj.2020.101201 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 67 es_ES
dc.relation.pasarela S\414208 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Capponi, A., Fiandrino, C., Kantarci, B., Foschini, L., Kliazovich, D., & Bouvry, P. (2019). A Survey on Mobile Crowdsensing Systems: Challenges, Solutions, and Opportunities. IEEE Communications Surveys & Tutorials, 21(3), 2419-2465. doi:10.1109/comst.2019.2914030 es_ES
dc.description.references Trifunovic, S., Kouyoumdjieva, S. T., Distl, B., Pajevic, L., Karlsson, G., & Plattner, B. (2017). A Decade of Research in Opportunistic Networks: Challenges, Relevance, and Future Directions. IEEE Communications Magazine, 55(1), 168-173. doi:10.1109/mcom.2017.1500527cm es_ES
dc.description.references Dede, J., Forster, A., Hernandez-Orallo, E., Herrera-Tapia, J., Kuladinithi, K., Kuppusamy, V., … Vatandas, Z. (2018). Simulating Opportunistic Networks: Survey and Future Directions. IEEE Communications Surveys & Tutorials, 20(2), 1547-1573. doi:10.1109/comst.2017.2782182 es_ES
dc.description.references Udugama, A., Dede, J., Förster, A., Kuppusamy, V., Kuladinithi, K., Timm-Giel, A., & Vatandas, Z. (2019). My Smartphone tattles: Considering Popularity of Messages in Opportunistic Data Dissemination. Future Internet, 11(2), 29. doi:10.3390/fi11020029 es_ES
dc.description.references Groenevelt, R., Nain, P., & Koole, G. (2005). The message delay in mobile ad hoc networks. Performance Evaluation, 62(1-4), 210-228. doi:10.1016/j.peva.2005.07.018 es_ES
dc.description.references Lindgren, A., Doria, A., & Schelén, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19-20. doi:10.1145/961268.961272 es_ES
dc.description.references Borrego, C., Borrell, J., & Robles, S. (2019). Efficient broadcast in opportunistic networks using optimal stopping theory. Ad Hoc Networks, 88, 5-17. doi:10.1016/j.adhoc.2019.01.001 es_ES
dc.description.references Hernández-Orallo, E., Murillo-Arcila, M., Calafate, C. T., Cano, J. C., Conejero, J. A., & Manzoni, P. (2016). Analytical evaluation of the performance of contact-Based messaging applications. Computer Networks, 111, 45-54. doi:10.1016/j.comnet.2016.07.006 es_ES
dc.description.references Haas, Z. J., & Small, T. (2006). A new networking model for biological applications of ad hoc sensor networks. IEEE/ACM Transactions on Networking, 14(1), 27-40. doi:10.1109/tnet.2005.863461 es_ES
dc.description.references Zhang, X., Neglia, G., Kurose, J., & Towsley, D. (2007). Performance modeling of epidemic routing. Computer Networks, 51(10), 2867-2891. doi:10.1016/j.comnet.2006.11.028 es_ES
dc.description.references Tsai, T.-C., & Chan, H.-H. (2015). NCCU Trace: social-network-aware mobility trace. IEEE Communications Magazine, 53(10), 144-149. doi:10.1109/mcom.2015.7295476 es_ES
dc.description.references Yao, Y., Yang, L. T., & Xiong, N. N. (2015). Anonymity-Based Privacy-Preserving Data Reporting for Participatory Sensing. IEEE Internet of Things Journal, 2(5), 381-390. doi:10.1109/jiot.2015.2410425 es_ES
dc.description.references Wu, X., Brown, K. N., & Sreenan, C. J. (2013). Analysis of smartphone user mobility traces for opportunistic data collection in wireless sensor networks. Pervasive and Mobile Computing, 9(6), 881-891. doi:10.1016/j.pmcj.2013.07.003 es_ES
dc.description.references Amah, T., Kamat, M., Bakar, K., Rahman, S., Mohammed, M., Abali, A., … Oliveira, A. (2017). Collecting Sensed Data with Opportunistic Networks: The Case of Contact Information Overhead. Information, 8(3), 108. doi:10.3390/info8030108 es_ES
dc.description.references Pajevic, L., Fodor, V., & Karlsson, G. (Eds.). (2018). Ensuring Persistent Content in Opportunistic Networks via Stochastic Stability Analysis. ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 3(4), 1-23. doi:10.1145/3232161 es_ES
dc.description.references Hernandez-Orallo, E., Olmos, M. D. S., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2015). CoCoWa: A Collaborative Contact-Based Watchdog for Detecting Selfish Nodes. IEEE Transactions on Mobile Computing, 14(6), 1162-1175. doi:10.1109/tmc.2014.2343627 es_ES
dc.description.references Karaliopoulos, M. (2009). Assessing the vulnerability of DTN data relaying schemes to node selfishness. IEEE Communications Letters, 13(12), 923-925. doi:10.1109/lcomm.2009.12.091520 es_ES
dc.description.references Whitbeck, J., Conan, V., & de Amorim, M. D. (2011). Performance of Opportunistic Epidemic Routing on Edge-Markovian Dynamic Graphs. IEEE Transactions on Communications, 59(5), 1259-1263. doi:10.1109/tcomm.2011.020811.090163 es_ES
dc.description.references Moutinho de Souza Dias, G., Ferreira de Rezende, J., & Moreira Salles, R. (2019). Mathematical modeling of delivery delay for multi-copy opportunistic networks with heterogeneous pairwise encounter rates. Information Sciences, 475, 142-160. doi:10.1016/j.ins.2018.09.056 es_ES
dc.description.references Herrera-Tapia, J., Hernández-Orallo, E., Tomás, A., Manzoni, P., Tavares Calafate, C., & Cano, J.-C. (2016). Friendly-Sharing: Improving the Performance of City Sensoring through Contact-Based Messaging Applications. Sensors, 16(9), 1523. doi:10.3390/s16091523 es_ES
dc.description.references Hernandez-Orallo, E., Herrera-Tapia, J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2015). Evaluating the Impact of Data Transfer Time in Contact-Based Messaging Applications. IEEE Communications Letters, 19(10), 1814-1817. doi:10.1109/lcomm.2015.2472407 es_ES
dc.description.references Grossglauser, M., & Tse, D. N. C. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4), 477-486. doi:10.1109/tnet.2002.801403 es_ES
dc.description.references Borrego, C., Hernández-Orallo, E., & Magaia, N. (2019). General and mixed linear regressions to estimate inter-contact times and contact duration in opportunistic networks. Ad Hoc Networks, 93, 101927. doi:10.1016/j.adhoc.2019.101927 es_ES
dc.description.references A. Keränen, J. Ott, T. Kärkkäinen, The ONE simulator for DTN protocol evaluation, in: Proceedings of SIMUTools’09, 2009, pp. 55:1–55:10. es_ES
dc.description.references E. Hernández-Orallo, D. Fernández-Delegido, J. Herrera-Tapia, J. Cano, C. Calafate, P. Manzoni, GRChat: A contact-based messaging application for the evaluation of information diffusion, in: Proceedings of the 6th International Conference on Advanced Communications and Computation, INFOCOMP, 2016. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem