- -

UAV Mobility model for dynamic UAV-to-car communications in 3D environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

UAV Mobility model for dynamic UAV-to-car communications in 3D environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hadiwardoyo, Seilendria A. es_ES
dc.contributor.author Dricot, Jean-Michel es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.contributor.author Hernández-Orallo, Enrique es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.date.accessioned 2021-03-09T04:32:30Z
dc.date.available 2021-03-09T04:32:30Z
dc.date.issued 2020-10-01 es_ES
dc.identifier.issn 1570-8705 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163486
dc.description.abstract [EN] In scenarios where there is a lack of reliable infrastructures to support car-to-car communications, Unmanned Aerial Vehicles (UAVs) can be deployed as mobile infrastructures. However, the UAVs should be deployed at adequate location and heights to maintain the coverage throughout time as the irregularities of the terrain may have a significant impact on the radio signals sent to distribute information. So, flight altitude and location should be constantly adjusted in order to avoid hilly or mountainous terrains that might hinder the Line-of-Sight (LOS). In this paper, we propose a three-dimensional mobility model to define the movement of the UAV so as to maintain good coverage levels in terms of communications with moving ground vehicles by taking into account the elevation information of the Earth's surface and the signal power towards the different vehicles. The results showed that our proposed model is able to extend the times with connectivity between the UAV and the cars compared to a simpler two-dimensional model, which never considers the altitude, and a static model, which maintains the same UAV position from the beginning to the end of the experiment. es_ES
dc.description.sponsorship This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018", Spain, under Grant RTI2018-096384-B-I00, grant BES-2015-075988, Ayudas para contratos predoctorales 2015 and the Erasmus+ practicas grant. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Ad Hoc Networks es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject UAV es_ES
dc.subject Simulation es_ES
dc.subject Mobility es_ES
dc.subject Vehicular communications es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title UAV Mobility model for dynamic UAV-to-car communications in 3D environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.adhoc.2020.102193 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-075988/ES/BES-2015-075988/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Hadiwardoyo, SA.; Dricot, J.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Hernández-Orallo, E.; Manzoni, P. (2020). UAV Mobility model for dynamic UAV-to-car communications in 3D environments. Ad Hoc Networks. 107:1-9. https://doi.org/10.1016/j.adhoc.2020.102193 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.adhoc.2020.102193 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 107 es_ES
dc.relation.pasarela S\414356 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of Important Issues in UAV Communication Networks. IEEE Communications Surveys & Tutorials, 18(2), 1123-1152. doi:10.1109/comst.2015.2495297 es_ES
dc.description.references Zhou, Y., Cheng, N., Lu, N., & Shen, X. S. (2015). Multi-UAV-Aided Networks: Aerial-Ground Cooperative Vehicular Networking Architecture. IEEE Vehicular Technology Magazine, 10(4), 36-44. doi:10.1109/mvt.2015.2481560 es_ES
dc.description.references Hadiwardoyo, S. A., Hernández-Orallo, E., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). Experimental characterization of UAV-to-car communications. Computer Networks, 136, 105-118. doi:10.1016/j.comnet.2018.03.002 es_ES
dc.description.references Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., Lagraa, N., & Yagoubi, M. B. (2017). Intelligent UAV-assisted routing protocol for urban VANETs. Computer Communications, 107, 93-111. doi:10.1016/j.comcom.2017.04.001 es_ES
dc.description.references Bujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E., & Ronzani, D. (2017). Flying ad-hoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks, 13(10), 155014771773819. doi:10.1177/1550147717738192 es_ES
dc.description.references Hadiwardoyo, S. A., Calafate, C. T., Cano, J.-C., Ji, Y., Hernandez-Orallo, E., & Manzoni, P. (2019). 3D Simulation Modeling of UAV-to-Car Communications. IEEE Access, 7, 8808-8823. doi:10.1109/access.2018.2889604 es_ES
dc.description.references Jia, S., & Zhang, L. (2017). Modelling unmanned aerial vehicles base station in ground‐to‐air cooperative networks. IET Communications, 11(8), 1187-1194. doi:10.1049/iet-com.2016.0808 es_ES
dc.description.references Hadiwardoyo, S. A., Calafate, C. T., Cano, J.-C., Krinkin, K., Klionskiy, D., Hernández-Orallo, E., & Manzoni, P. (2020). Three Dimensional UAV Positioning for Dynamic UAV-to-Car Communications. Sensors, 20(2), 356. doi:10.3390/s20020356 es_ES
dc.description.references Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483-502. doi:10.1002/wcm.72 es_ES
dc.description.references Bettstetter, C., Hartenstein, H., & Pérez-Costa, X. (2004). Stochastic Properties of the Random Waypoint Mobility Model. Wireless Networks, 10(5), 555-567. doi:10.1023/b:wine.0000036458.88990.e5 es_ES
dc.description.references Wang, W., Guan, X., Wang, B., & Wang, Y. (2010). A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Information Sciences, 180(3), 399-413. doi:10.1016/j.ins.2009.10.001 es_ES
dc.description.references Xie, J., Wan, Y., Wang, B., Fu, S., Lu, K., & Kim, J. H. (2018). A Comprehensive 3-Dimensional Random Mobility Modeling Framework for Airborne Networks. IEEE Access, 6, 22849-22862. doi:10.1109/access.2018.2819600 es_ES
dc.description.references Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., … Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2). doi:10.1029/2005rg000183 es_ES
dc.description.references Bullington, K. (1947). Radio Propagation at Frequencies above 30 Megacycles. Proceedings of the IRE, 35(10), 1122-1136. doi:10.1109/jrproc.1947.232600 es_ES
dc.description.references Whitteker, J. H. (1990). Fresnel-Kirchhoff theory applied to terrain diffraction problems. Radio Science, 25(5), 837-851. doi:10.1029/rs025i005p00837 es_ES
dc.description.references Sommer, C., German, R., & Dressler, F. (2011). Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis. IEEE Transactions on Mobile Computing, 10(1), 3-15. doi:10.1109/tmc.2010.133 es_ES
dc.description.references Haklay, M., & Weber, P. (2008). OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing, 7(4), 12-18. doi:10.1109/mprv.2008.80 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem