- -

Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Compañ Moreno, Vicente es_ES
dc.contributor.author Escorihuela Fuentes, Jorge es_ES
dc.contributor.author Olvera, Jessica es_ES
dc.contributor.author Garcia-Bernabe, Abel es_ES
dc.contributor.author ANDRIO, ANDREU es_ES
dc.date.accessioned 2021-03-17T04:31:39Z
dc.date.available 2021-03-17T04:31:39Z
dc.date.issued 2020-09-10 es_ES
dc.identifier.issn 0013-4686 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163975
dc.description.abstract [EN] The study of proton conductivity processes has received increasing attention in the past decades due to their potential applications in fields such as electrochemical devices and fuel cells. Despite the high number of composite membranes which have been described for this purpose, fundamental studies of the conduction phenomena in polymeric membranes are scarce. In this article, we study on the effect of the anion on ionic conductivity of ionic liquid composite polybenzimidazole (PBI) membranes. These membranes, which contain 1-butyl-3-methylimidazolium (BMIM) with different counterions ([Cl]-, [NCS]-, [NTf2]- and [BF4]-) were analyzed by electrochemical impedance spectroscopy (EIS) in order to study the influence of the anion on the ionic conductivity, but also mobility and charge carrier density at different temperatures. The methodology for this analysis is based on the Coelho model of electrode polarization (EP), where the dependence of the complex dielectric permittivity on frequency is represented in terms of a Cole-Cole function, contrarily to the generally used simple Debye relaxation. The calculated activation energies associated to the conductivity showed a dependence on the anion and is around 65-84 kJ mol-1, which suggests that the ionic conductivity mainly occurs through the vehicle-type mechanism. The calculated diffusivity values followed the trend D NTf2 > D Cl > D BF4> D SCN, with an associated activation energy (in kJ·mol¿1) following the trend Eact(NTf2) = 10.9 < Eact(Cl) = 12.6 < Eact(BF4) = 18.5 < Eact(SCN) = 25.1. The comparison between these values reveals that a decrease in the ion binding energies (Eb) and stabilization energies (Es) could be responsible for the growth of the diffusion coefficient around one or two orders of magnitude depending on temperature and anion. The low stabilization energy observed for the NTF2- and Cl- anions in comparison with NCS- and BF4, can be attributed to the poor stabilization of separated ion pairs by coordination with the PBI segments, which is reflected in the values of the dielectric permittivity (es) calculated by EIS. es_ES
dc.description.sponsorship This work was financially supported by the Ministerio de Economia y Competitividad (MINECO) under project ENE2015-69203-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Electrochimica Acta es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Polymer electrolytes es_ES
dc.subject Polybenzimidazole es_ES
dc.subject Ionic liquids es_ES
dc.subject Conductivity es_ES
dc.subject Ionic transport es_ES
dc.subject Mobility es_ES
dc.subject Electrochemical impedance spectroscopy es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.electacta.2020.136666 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Compañ Moreno, V.; Escorihuela Fuentes, J.; Olvera, J.; Garcia-Bernabe, A.; Andrio, A. (2020). Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochimica Acta. 354:1-12. https://doi.org/10.1016/j.electacta.2020.136666 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.electacta.2020.136666 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 354 es_ES
dc.relation.pasarela S\423669 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620 es_ES
dc.description.references Kreuer, K.-D., & Portale, G. (2013). A Critical Revision of the Nano-Morphology of Proton Conducting Ionomers and Polyelectrolytes for Fuel Cell Applications. Advanced Functional Materials, 23(43), 5390-5397. doi:10.1002/adfm.201300376 es_ES
dc.description.references Bakangura, E., Wu, L., Ge, L., Yang, Z., & Xu, T. (2016). Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 57, 103-152. doi:10.1016/j.progpolymsci.2015.11.004 es_ES
dc.description.references Di Noto, V., Lavina, S., Giffin, G. A., Negro, E., & Scrosati, B. (2011). Polymer electrolytes: Present, past and future. Electrochimica Acta, 57, 4-13. doi:10.1016/j.electacta.2011.08.048 es_ES
dc.description.references Tarascon, J.-M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. doi:10.1038/35104644 es_ES
dc.description.references Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k es_ES
dc.description.references Reinholdt, M. X., & Kaliaguine, S. (2010). Proton Exchange Membranes for Application in Fuel Cells: Grafted Silica/SPEEK Nanocomposite Elaboration and Characterization. Langmuir, 26(13), 11184-11195. doi:10.1021/la100051j es_ES
dc.description.references Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024 es_ES
dc.description.references Ghosh, S., Maity, S., & Jana, T. (2011). Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell. Journal of Materials Chemistry, 21(38), 14897. doi:10.1039/c1jm12169c es_ES
dc.description.references Escorihuela, García-Bernabé, Montero, Andrio, Sahuquillo, Giménez, & Compañ. (2019). Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers, 11(7), 1182. doi:10.3390/polym11071182 es_ES
dc.description.references Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f es_ES
dc.description.references Özdemir, Y., Üregen, N., & Devrim, Y. (2017). Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2648-2657. doi:10.1016/j.ijhydene.2016.04.132 es_ES
dc.description.references Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2636-2647. doi:10.1016/j.ijhydene.2016.07.009 es_ES
dc.description.references Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g es_ES
dc.description.references Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775 es_ES
dc.description.references Barjola, A., Escorihuela, J., Andrio, A., Giménez, E., & Compañ, V. (2018). Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials, 8(12), 1042. doi:10.3390/nano8121042 es_ES
dc.description.references Liu, S., Zhou, L., Wang, P., Zhang, F., Yu, S., Shao, Z., & Yi, B. (2014). Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications. ACS Applied Materials & Interfaces, 6(5), 3195-3200. doi:10.1021/am404645c es_ES
dc.description.references Kallem, P., Eguizabal, A., Mallada, R., & Pina, M. P. (2016). Constructing Straight Polyionic Liquid Microchannels for Fast Anhydrous Proton Transport. ACS Applied Materials & Interfaces, 8(51), 35377-35389. doi:10.1021/acsami.6b13315 es_ES
dc.description.references Kallem, P., Drobek, M., Julbe, A., Vriezekolk, E. J., Mallada, R., & Pina, M. P. (2017). Hierarchical Porous Polybenzimidazole Microsieves: An Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids. ACS Applied Materials & Interfaces, 9(17), 14844-14857. doi:10.1021/acsami.7b01916 es_ES
dc.description.references Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 72(7), 1391-1398. doi:10.1351/pac200072071391 es_ES
dc.description.references Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123-150. doi:10.1039/b006677j es_ES
dc.description.references Rehman, A., & Zeng, X. (2012). Ionic Liquids as Green Solvents and Electrolytes for Robust Chemical Sensor Development. Accounts of Chemical Research, 45(10), 1667-1677. doi:10.1021/ar200330v es_ES
dc.description.references Qureshi, Z. S., Deshmukh, K. M., & Bhanage, B. M. (2013). Applications of ionic liquids in organic synthesis and catalysis. Clean Technologies and Environmental Policy, 16(8), 1487-1513. doi:10.1007/s10098-013-0660-0 es_ES
dc.description.references Ventura, S. P. M., e Silva, F. A., Quental, M. V., Mondal, D., Freire, M. G., & Coutinho, J. A. P. (2017). Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chemical Reviews, 117(10), 6984-7052. doi:10.1021/acs.chemrev.6b00550 es_ES
dc.description.references González-Mendoza, L., Altava, B., Burguete, M. I., Escorihuela, J., Hernando, E., Luis, S. V., … Vicent, C. (2015). Bis(imidazolium) salts derived from amino acids as receptors and transport agents for chloride anions. RSC Advances, 5(43), 34415-34423. doi:10.1039/c5ra05880e es_ES
dc.description.references Dai, C., Zhang, J., Huang, C., & Lei, Z. (2017). Ionic Liquids in Selective Oxidation: Catalysts and Solvents. Chemical Reviews, 117(10), 6929-6983. doi:10.1021/acs.chemrev.7b00030 es_ES
dc.description.references González, L., Escorihuela, J., Altava, B., Burguete, M. I., & Luis, S. V. (2014). Chiral Room Temperature Ionic Liquids as Enantioselective Promoters for the Asymmetric Aldol Reaction. European Journal of Organic Chemistry, 2014(24), 5356-5363. doi:10.1002/ejoc.201402436 es_ES
dc.description.references Lu, F., Gao, X., Wu, A., Sun, N., Shi, L., & Zheng, L. (2017). Lithium-Containing Zwitterionic Poly(Ionic Liquid)s as Polymer Electrolytes for Lithium-Ion Batteries. The Journal of Physical Chemistry C, 121(33), 17756-17763. doi:10.1021/acs.jpcc.7b06242 es_ES
dc.description.references Quinn, B. M., Ding, Z., Moulton, R., & Bard, A. J. (2002). Novel Electrochemical Studies of Ionic Liquids. Langmuir, 18(5), 1734-1742. doi:10.1021/la011458x es_ES
dc.description.references Santos, M. C. G., Silva, G. G., Santamaría, R., Ortega, P. F. R., & Lavall, R. L. (2019). Discussion on Operational Voltage and Efficiencies of Ionic-Liquid-Based Electrochemical Capacitors. The Journal of Physical Chemistry C, 123(14), 8541-8549. doi:10.1021/acs.jpcc.8b11607 es_ES
dc.description.references Watanabe, M., Thomas, M. L., Zhang, S., Ueno, K., Yasuda, T., & Dokko, K. (2017). Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews, 117(10), 7190-7239. doi:10.1021/acs.chemrev.6b00504 es_ES
dc.description.references Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109 es_ES
dc.description.references Rewar, A. S., Chaudhari, H. D., Illathvalappil, R., Sreekumar, K., & Kharul, U. K. (2014). New approach of blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical and electrochemical properties. Journal of Materials Chemistry A, 2(35), 14449. doi:10.1039/c4ta02184c es_ES
dc.description.references Van de Ven, E., Chairuna, A., Merle, G., Benito, S. P., Borneman, Z., & Nijmeijer, K. (2013). Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. Journal of Power Sources, 222, 202-209. doi:10.1016/j.jpowsour.2012.07.112 es_ES
dc.description.references Mamlouk, M., Ocon, P., & Scott, K. (2014). Preparation and characterization of polybenzimidzaole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 245, 915-926. doi:10.1016/j.jpowsour.2013.07.050 es_ES
dc.description.references Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4 es_ES
dc.description.references Macdonald, J. R. (2010). Utility of continuum diffusion models for analyzing mobile-ion immittance data: electrode polarization, bulk, and generation–recombination effects. Journal of Physics: Condensed Matter, 22(49), 495101. doi:10.1088/0953-8984/22/49/495101 es_ES
dc.description.references Macdonald, J. R., Evangelista, L. R., Lenzi, E. K., & Barbero, G. (2011). Comparison of Impedance Spectroscopy Expressions and Responses of Alternate Anomalous Poisson−Nernst−Planck Diffusion Equations for Finite-Length Situations. The Journal of Physical Chemistry C, 115(15), 7648-7655. doi:10.1021/jp200737z es_ES
dc.description.references Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700 es_ES
dc.description.references Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w es_ES
dc.description.references Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1 es_ES
dc.description.references Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting glasses. II. Free carrier concentration and mobility. Journal of Non-Crystalline Solids, 144, 14-20. doi:10.1016/s0022-3093(05)80378-3 es_ES
dc.description.references Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947 es_ES
dc.description.references Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004 es_ES
dc.description.references Sangoro, J. R., Serghei, A., Naumov, S., Galvosas, P., Kärger, J., Wespe, C., … Kremer, F. (2008). Charge transport and mass transport in imidazolium-based ionic liquids. Physical Review E, 77(5). doi:10.1103/physreve.77.051202 es_ES
dc.description.references Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 es_ES
dc.description.references Sangoro, J. R., Iacob, C., Agapov, A. L., Wang, Y., Berdzinski, S., Rexhausen, H., … Kremer, F. (2014). Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. Soft Matter, 10(20), 3536-3540. doi:10.1039/c3sm53202j es_ES
dc.description.references Mauritz, K. A. (1989). Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 4. Long-range ion transport. Macromolecules, 22(12), 4483-4488. doi:10.1021/ma00202a018 es_ES
dc.description.references Wübbenhorst, M., & van Turnhout, J. (2002). Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. Journal of Non-Crystalline Solids, 305(1-3), 40-49. doi:10.1016/s0022-3093(02)01086-4 es_ES
dc.description.references Escorihuela, J., García-Bernabé, A., Montero, Á., Sahuquillo, Ó., Giménez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732 es_ES
dc.description.references The Oxidative Stability of the Membranes Was Investigated by Immersing the Membranes in Fenton’s Reagent (3% H2O2 Solution Containing 4 Ppm Fe2+) at 70 °C. The Samples Were Collected by Filtering and Rinsed with Deionized Water Several Times, Then Dried at 120 °C for 5 H in a Vacuum Oven. Next, the Degradation of the Membranes Was Evaluated by Their Weight Loss. es_ES
dc.description.references Nyquist, H. (1928). Thermal Agitation of Electric Charge in Conductors. Physical Review, 32(1), 110-113. doi:10.1103/physrev.32.110 es_ES
dc.description.references Schröder, C., Rudas, T., & Steinhauser, O. (2006). Simulation studies of ionic liquids: Orientational correlations and static dielectric properties. The Journal of Chemical Physics, 125(24), 244506. doi:10.1063/1.2404674 es_ES
dc.description.references Tsuzuki, S., Tokuda, H., Hayamizu, K., & Watanabe, M. (2005). Magnitude and Directionality of Interaction in Ion Pairs of Ionic Liquids:  Relationship with Ionic Conductivity. The Journal of Physical Chemistry B, 109(34), 16474-16481. doi:10.1021/jp0533628 es_ES
dc.description.references Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 es_ES
dc.description.references Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., … Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820a es_ES
dc.description.references Weingärtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951 es_ES
dc.description.references Kuriakose, M., Longuemart, S., Depriester, M., Delenclos, S., & Sahraoui, A. H. (2014). Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals. Physical Review E, 89(2). doi:10.1103/physreve.89.022511 es_ES
dc.description.references Samet, M., Levchenko, V., Boiteux, G., Seytre, G., Kallel, A., & Serghei, A. (2015). Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. The Journal of Chemical Physics, 142(19), 194703. doi:10.1063/1.4919877 es_ES
dc.description.references Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308 es_ES
dc.description.references Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 es_ES
dc.description.references Valverde, D., Garcia-Bernabé, A., Andrio, A., García-Verdugo, E., Luis, S. V., & Compañ, V. (2019). Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions. Physical Chemistry Chemical Physics, 21(32), 17923-17932. doi:10.1039/c9cp01903k es_ES
dc.description.references Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2008). Molecular Mobility, Ion Mobility, and Mobile Ion Concentration in Poly(ethylene oxide)-Based Polyurethane Ionomers. Macromolecules, 41(15), 5723-5728. doi:10.1021/ma800263b es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem