- -

Water resources sustainability model for wetland conservation based on anonymous expert elicitation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Water resources sustainability model for wetland conservation based on anonymous expert elicitation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Canto-Perello, Julian es_ES
dc.contributor.author Benitez-Navio, Alberto es_ES
dc.contributor.author Martín Utrillas, Manuel Guzmán es_ES
dc.contributor.author Martinez-Leon, Jesus es_ES
dc.contributor.author Curiel Esparza, Jorge es_ES
dc.date.accessioned 2021-03-23T04:31:42Z
dc.date.available 2021-03-23T04:31:42Z
dc.date.issued 2021-02 es_ES
dc.identifier.issn 1364-8152 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164063
dc.description.abstract [EN] Wetlands play a key role in preserving biodiversity and preventing climate change. Their conservation poses an important and pressing challenge. In the Mediterranean region, one of the key threats to wetland survival is the lack of water due to competition for resources. The selection of the most sustainable water resources for wetland conservation is a complex elicitation problem. A novel Water Resources Sustainability Model (WRSM) focused on water quality has been developed to support the decision-making. This collaborative elicitation model is based on the analytical hierarchy process and uses the reference environmental status of the wetland. The model can be used to discriminate which water resources are more sustainable for the conservation of the wetland. The WRSM has been applied successfully to Las Tablas de Daimiel National Park. The framework enables establishing priorities when analyzing in terms of water quality any surface, recycled or underground water resources. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Environmental Modelling & Software es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sustainability model es_ES
dc.subject Wetlands conservation es_ES
dc.subject Hydrological restoration es_ES
dc.subject Physico-chemical indicators es_ES
dc.subject Expert elicitation es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Water resources sustainability model for wetland conservation based on anonymous expert elicitation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.envsoft.2020.104952 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Canto-Perello, J.; Benitez-Navio, A.; Martín Utrillas, MG.; Martinez-Leon, J.; Curiel Esparza, J. (2021). Water resources sustainability model for wetland conservation based on anonymous expert elicitation. Environmental Modelling & Software. 136:1-12. https://doi.org/10.1016/j.envsoft.2020.104952 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.envsoft.2020.104952 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 136 es_ES
dc.relation.pasarela S\425557 es_ES
dc.description.references Aguilera, H., & Merino, L. M. (2018). Data on chemical composition of soil and water in the semiarid wetland of Las Tablas de Damiel National Park (Spain) during a drought period. Data in Brief, 19, 2481-2486. doi:10.1016/j.dib.2018.04.085 es_ES
dc.description.references Aguilera, H., Moreno, L., Wesseling, J. G., Jiménez-Hernández, M. E., & Castaño, S. (2016). Soil moisture prediction to support management in semiarid wetlands during drying episodes. CATENA, 147, 709-724. doi:10.1016/j.catena.2016.08.007 es_ES
dc.description.references Alafifi, A. H., & Rosenberg, D. E. (2020). Systems modeling to improve river, riparian, and wetland habitat quality and area. Environmental Modelling & Software, 126, 104643. doi:10.1016/j.envsoft.2020.104643 es_ES
dc.description.references Alvarez Etxeberria, I., Garayar, A., & Calvo Sánchez, J. A. (2015). Development of sustainability reports for farming operations in the Basque Country using the Delphi method. Revista de Contabilidad, 18(1), 44-54. doi:10.1016/j.rcsar.2014.03.004 es_ES
dc.description.references Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849-2861. doi:10.1016/j.watres.2008.03.018 es_ES
dc.description.references Bilotta, G. S., Burnside, N. G., Cheek, L., Dunbar, M. J., Grove, M. K., Harrison, C., … Davy-Bowker, J. (2012). Developing environment-specific water quality guidelines for suspended particulate matter. Water Research, 46(7), 2324-2332. doi:10.1016/j.watres.2012.01.055 es_ES
dc.description.references Blaas, H., & Kroeze, C. (2016). Excessive nitrogen and phosphorus in European rivers: 2000–2050. Ecological Indicators, 67, 328-337. doi:10.1016/j.ecolind.2016.03.004 es_ES
dc.description.references Caen, A., Latour, D., & Mathias, J. D. (2019). Dynamical effects of retention structures on the mitigation of lake eutrophication. Environmental Modelling & Software, 119, 309-326. doi:10.1016/j.envsoft.2019.06.012 es_ES
dc.description.references Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831-849. doi:10.1016/j.envint.2006.05.002 es_ES
dc.description.references Canto-Perello, J., Martinez-Leon, J., Curiel-Esparza, J., & Martin-Utrillas, M. (2017). Consensus in prioritizing river rehabilitation projects through the integration of social, economic and landscape indicators. Ecological Indicators, 72, 659-666. doi:10.1016/j.ecolind.2016.09.004 es_ES
dc.description.references Canto-Perello, J., Morera-Escrich, J. L., Martin-Utrillas, M., & Curiel-Esparza, J. (2018). Restoration prioritization framework for roadway high cut slopes to reverse land degradation and fragmentation. Land Use Policy, 71, 470-479. doi:10.1016/j.landusepol.2017.11.020 es_ES
dc.description.references Cirujano, S., Casado, C., Bernués, M., & Camargo, J. A. (1996). Ecological study of Las Tablas de Daimiel National Park (Ciudad Real, central Spain): Differences in water physico-chemistry and vegetation between 1974 and 1989. Biological Conservation, 75(3), 211-215. doi:10.1016/0006-3207(95)00079-8 es_ES
dc.description.references Curiel-Esparza, J., Gonzalez-Utrillas, N., Canto-Perello, J., & Martin-Utrillas, M. (2015). Integrating climate change criteria in reforestation projects using a hybrid decision-support system. Environmental Research Letters, 10(9), 094022. doi:10.1088/1748-9326/10/9/094022 es_ES
dc.description.references Curiel-Esparza, J., Mazario-Diez, J. L., Canto-Perello, J., & Martin-Utrillas, M. (2016). Prioritization by consensus of enhancements for sustainable mobility in urban areas. Environmental Science & Policy, 55, 248-257. doi:10.1016/j.envsci.2015.10.015 es_ES
dc.description.references Curiel-Esparza, J., Reyes-Medina, M., Martin-Utrillas, M., Martinez-Garcia, M. P., & Canto-Perello, J. (2019). Collaborative elicitation to select a sustainable biogas desulfurization technique for landfills. Journal of Cleaner Production, 212, 1334-1344. doi:10.1016/j.jclepro.2018.12.095 es_ES
dc.description.references Dong, Y., Zhang, G., Hong, W.-C., & Xu, Y. (2010). Consensus models for AHP group decision making under row geometric mean prioritization method. Decision Support Systems, 49(3), 281-289. doi:10.1016/j.dss.2010.03.003 es_ES
dc.description.references Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108(1), 165-169. doi:10.1016/s0377-2217(97)00244-0 es_ES
dc.description.references Gu, S., Gruau, G., Dupas, R., Petitjean, P., Li, Q., & Pinay, G. (2019). Respective roles of Fe-oxyhydroxide dissolution, pH changes and sediment inputs in dissolved phosphorus release from wetland soils under anoxic conditions. Geoderma, 338, 365-374. doi:10.1016/j.geoderma.2018.12.034 es_ES
dc.description.references Haas, M. B., Guse, B., & Fohrer, N. (2017). Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. Journal of Environmental Management, 196, 347-364. doi:10.1016/j.jenvman.2017.02.060 es_ES
dc.description.references Thi Minh Hanh, P., Sthiannopkao, S., The Ba, D., & Kim, K.-W. (2011). Development of Water Quality Indexes to Identify Pollutants in Vietnam’s Surface Water. Journal of Environmental Engineering, 137(4), 273-283. doi:10.1061/(asce)ee.1943-7870.0000314 es_ES
dc.description.references Hes, E. M., & van Dam, A. A. (2019). Modelling nitrogen and phosphorus cycling and retention in Cyperus papyrus dominated natural wetlands. Environmental Modelling & Software, 122, 104531. doi:10.1016/j.envsoft.2019.104531 es_ES
dc.description.references Juston, J. M., & Kadlec, R. H. (2019). Data-driven modeling of phosphorus (P) dynamics in low-P stormwater wetlands. Environmental Modelling & Software, 118, 226-240. doi:10.1016/j.envsoft.2019.05.002 es_ES
dc.description.references Juwana, I., Muttil, N., & Perera, B. J. C. (2012). Indicator-based water sustainability assessment — A review. Science of The Total Environment, 438, 357-371. doi:10.1016/j.scitotenv.2012.08.093 es_ES
dc.description.references Kløve, B., Allan, A., Bertrand, G., Druzynska, E., Ertürk, A., Goldscheider, N., … Schipper, P. (2011). Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environmental Science & Policy, 14(7), 782-793. doi:10.1016/j.envsci.2011.04.005 es_ES
dc.description.references Koskiaho, J., & Puustinen, M. (2019). Suspended solids and nutrient retention in two constructed wetlands as determined from continuous data recorded with sensors. Ecological Engineering, 137, 65-75. doi:10.1016/j.ecoleng.2019.04.006 es_ES
dc.description.references Lefebvre, G., Redmond, L., Germain, C., Palazzi, E., Terzago, S., Willm, L., & Poulin, B. (2019). Predicting the vulnerability of seasonally-flooded wetlands to climate change across the Mediterranean Basin. Science of The Total Environment, 692, 546-555. doi:10.1016/j.scitotenv.2019.07.263 es_ES
dc.description.references Zhuang, L.-L., Yang, T., Zhang, J., & Li, X. (2019). The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. Bioresource Technology, 293, 122086. doi:10.1016/j.biortech.2019.122086 es_ES
dc.description.references Liu, Z., Tai, P., Li, X., Kong, L., Matthews, T. G., Lester, R. E., & Mondon, J. A. (2019). Deriving site-specific water quality criteria for ammonia from national versus international toxicity data. Ecotoxicology and Environmental Safety, 171, 665-676. doi:10.1016/j.ecoenv.2018.12.078 es_ES
dc.description.references Lobanova, A., Liersch, S., Tàbara, J. D., Koch, H., Hattermann, F. F., & Krysanova, V. (2017). Harmonizing human-hydrological system under climate change: A scenario-based approach for the case of the headwaters of the Tagus River. Journal of Hydrology, 548, 436-447. doi:10.1016/j.jhydrol.2017.03.015 es_ES
dc.description.references Martin-Utrillas, M., Reyes-Medina, M., Curiel-Esparza, J., & Canto-Perello, J. (2014). Hybrid method for selection of the optimal process of leachate treatment in waste treatment and valorization plants or landfills. Clean Technologies and Environmental Policy, 17(4), 873-885. doi:10.1007/s10098-014-0834-4 es_ES
dc.description.references Man, Y., Hu, Y., & Ren, J. (2019). Forecasting COD load in municipal sewage based on ARMA and VAR algorithms. Resources, Conservation and Recycling, 144, 56-64. doi:10.1016/j.resconrec.2019.01.030 es_ES
dc.description.references Martinez-Martinez, E., Nejadhashemi, A. P., Woznicki, S. A., Adhikari, U., & Giri, S. (2015). Assessing the significance of wetland restoration scenarios on sediment mitigation plan. Ecological Engineering, 77, 103-113. doi:10.1016/j.ecoleng.2014.11.031 es_ES
dc.description.references Mayo, A. W., Muraza, M., & Norbert, J. (2018). Modelling nitrogen transformation and removal in mara river basin wetlands upstream of lake Victoria. Physics and Chemistry of the Earth, Parts A/B/C, 105, 136-146. doi:10.1016/j.pce.2018.03.005 es_ES
dc.description.references Moreno, L., Jiménez, M.-E., Aguilera, H., Jiménez, P., & de la Losa, A. (2010). The 2009 Smouldering Peat Fire in Las Tablas de Daimiel National Park (Spain). Fire Technology, 47(2), 519-538. doi:10.1007/s10694-010-0172-y es_ES
dc.description.references Nagisetty, R. M., Flynn, K. F., & Uecker, D. (2019). Dissolved oxygen modeling of effluent-dominated macrophyte-rich Silver Bow Creek. Ecological Modelling, 393, 85-97. doi:10.1016/j.ecolmodel.2018.12.009 es_ES
dc.description.references Navarro, V., García, B., Sánchez, D., & Asensio, L. (2011). An evaluation of the application of treated sewage effluents in Las Tablas de Daimiel National Park, Central Spain. Journal of Hydrology, 401(1-2), 53-64. doi:10.1016/j.jhydrol.2011.02.008 es_ES
dc.description.references Norouzian-Maleki, S., Bell, S., Hosseini, S.-B., & Faizi, M. (2015). Developing and testing a framework for the assessment of neighbourhood liveability in two contrasting countries: Iran and Estonia. Ecological Indicators, 48, 263-271. doi:10.1016/j.ecolind.2014.07.033 es_ES
dc.description.references Novakowski, N., & Wellar, B. (2008). Using the Delphi Technique in Normative Planning Research: Methodological Design Considerations. Environment and Planning A: Economy and Space, 40(6), 1485-1500. doi:10.1068/a39267 es_ES
dc.description.references Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design considerations and applications. Information & Management, 42(1), 15-29. doi:10.1016/j.im.2003.11.002 es_ES
dc.description.references O’Neil, G. L., Goodall, J. L., Behl, M., & Saby, L. (2020). Deep learning Using Physically-Informed Input Data for Wetland Identification. Environmental Modelling & Software, 126, 104665. doi:10.1016/j.envsoft.2020.104665 es_ES
dc.description.references Pérez-Martín, M. A., Estrela, T., & del-Amo, P. (2016). Measures required to reach the nitrate objectives in groundwater based on a long-term nitrate model for large river basins (Júcar, Spain). Science of The Total Environment, 566-567, 122-133. doi:10.1016/j.scitotenv.2016.04.206 es_ES
dc.description.references Pottinger, T. G. (2017). Modulation of the stress response in wild fish is associated with variation in dissolved nitrate and nitrite. Environmental Pollution, 225, 550-558. doi:10.1016/j.envpol.2017.03.021 es_ES
dc.description.references Prăvălie, R., Patriche, C., & Bandoc, G. (2017). Quantification of land degradation sensitivity areas in Southern and Central Southeastern Europe. New results based on improving DISMED methodology with new climate data. CATENA, 158, 309-320. doi:10.1016/j.catena.2017.07.006 es_ES
dc.description.references Restuccia, F., Huang, X., & Rein, G. (2017). Self-ignition of natural fuels: Can wildfires of carbon-rich soil start by self-heating? Fire Safety Journal, 91, 828-834. doi:10.1016/j.firesaf.2017.03.052 es_ES
dc.description.references Rivers-Moore, N. A., Dallas, H. F., & Morris, C. (2013). Towards setting environmental water temperature guidelines: A South African example. Journal of Environmental Management, 128, 380-392. doi:10.1016/j.jenvman.2013.04.059 es_ES
dc.description.references Rusydi, A. F. (2018). Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conference Series: Earth and Environmental Science, 118, 012019. doi:10.1088/1755-1315/118/1/012019 es_ES
dc.description.references Sánchez-Montoya, M. del M., Arce, M. I., Vidal-Abarca, M. R., Suárez, M. L., Prat, N., & Gómez, R. (2012). Establishing physico-chemical reference conditions in Mediterranean streams according to the European Water Framework Directive. Water Research, 46(7), 2257-2269. doi:10.1016/j.watres.2012.01.042 es_ES
dc.description.references Sanchez-Ramos, D., Sánchez-Emeterio, G., & Florín Beltrán, M. (2015). Changes in water quality of treated sewage effluents by their receiving environments in Tablas de Daimiel National Park, Spain. Environmental Science and Pollution Research, 23(7), 6082-6090. doi:10.1007/s11356-015-4660-y es_ES
dc.description.references Sapriza-Azuri, G., Jódar, J., Carrera, J., & Gupta, H. V. (2015). Toward a comprehensive assessment of the combined impacts of climate change and groundwater pumping on catchment dynamics. Journal of Hydrology, 529, 1701-1712. doi:10.1016/j.jhydrol.2015.08.015 es_ES
dc.description.references Singh, S., Ghosh, N. C., Krishan, G., Galkate, R., Thomas, T., & Jaiswal, R. K. (2015). Development of an Overall Water Quality Index (OWQI) for Surface Water in Indian Context. Current World Environment, 10(3), 813-822. doi:10.12944/cwe.10.3.12 es_ES
dc.description.references Singh, S., Ghosh, N. C., Gurjar, S., Krishan, G., Kumar, S., & Berwal, P. (2017). Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environmental Monitoring and Assessment, 190(1). doi:10.1007/s10661-017-6407-3 es_ES
dc.description.references Sperotto, A., Molina, J. L., Torresan, S., Critto, A., Pulido-Velazquez, M., & Marcomini, A. (2019). A Bayesian Networks approach for the assessment of climate change impacts on nutrients loading. Environmental Science & Policy, 100, 21-36. doi:10.1016/j.envsci.2019.06.004 es_ES
dc.description.references Sun, B., Tang, J., Yu, D., Song, Z., & Wang, P. (2019). Ecosystem health assessment: A PSR analysis combining AHP and FCE methods for Jiaozhou Bay, China1. Ocean & Coastal Management, 168, 41-50. doi:10.1016/j.ocecoaman.2018.10.026 es_ES
dc.description.references Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2015). Development of river water quality indices—a review. Environmental Monitoring and Assessment, 188(1). doi:10.1007/s10661-015-5050-0 es_ES
dc.description.references Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2017). Using the Analytic Hierarchy Process to identify parameter weights for developing a water quality index. Ecological Indicators, 75, 220-233. doi:10.1016/j.ecolind.2016.12.043 es_ES
dc.description.references Tooth, S. (2018). The geomorphology of wetlands in drylands: Resilience, nonresilience, or …? Geomorphology, 305, 33-48. doi:10.1016/j.geomorph.2017.10.017 es_ES
dc.description.references Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2020). Water Quality Assessment in Terms of Water Quality Index. American Journal of Water Resources, 1(3), 34-38. doi:10.12691/ajwr-1-3-3 es_ES
dc.description.references Viaroli, S., Mastrorillo, L., Lotti, F., Paolucci, V., & Mazza, R. (2018). The groundwater budget: A tool for preliminary estimation of the hydraulic connection between neighboring aquifers. Journal of Hydrology, 556, 72-86. doi:10.1016/j.jhydrol.2017.10.066 es_ES
dc.description.references Wang, H.-J., Xiao, X.-C., Wang, H.-Z., Li, Y., Yu, Q., Liang, X.-M., … Jeppesen, E. (2017). Effects of high ammonia concentrations on three cyprinid fish: Acute and whole-ecosystem chronic tests. Science of The Total Environment, 598, 900-909. doi:10.1016/j.scitotenv.2017.04.070 es_ES
dc.description.references Xu, Y., Wang, Y., Li, S., Huang, G., & Dai, C. (2018). Stochastic optimization model for water allocation on a watershed scale considering wetland’s ecological water requirement. Ecological Indicators, 92, 330-341. doi:10.1016/j.ecolind.2017.02.019 es_ES
dc.description.references Yuan, L., Ge, Z., Fan, X., & Zhang, L. (2014). Ecosystem-based coastal zone management: A comprehensive assessment of coastal ecosystems in the Yangtze Estuary coastal zone. Ocean & Coastal Management, 95, 63-71. doi:10.1016/j.ocecoaman.2014.04.005 es_ES
dc.description.references Zhang, R., Zhang, X., Yang, J., & Yuan, H. (2013). Wetland ecosystem stability evaluation by using Analytical Hierarchy Process (AHP) approach in Yinchuan Plain, China. Mathematical and Computer Modelling, 57(3-4), 366-374. doi:10.1016/j.mcm.2012.06.014 es_ES
dc.description.references ZHANG, L. (2016). CALCULATION OF WETLANDS ECOLOGICAL WATER REQUIREMENT IN CHINA’S WESTERN JILIN PROVINCE BASED ON REGIONALIZATION AND GRADATION TECHNIQUES. Applied Ecology and Environmental Research, 14(3), 463-478. doi:10.15666/aeer/1403_463478 es_ES
dc.description.references Zhang, B., Zhao, D., Zhou, P., Qu, S., Liao, F., & Wang, G. (2020). Hydrochemical Characteristics of Groundwater and Dominant Water–Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China. Water, 12(3), 836. doi:10.3390/w12030836 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem