- -

In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Solís, Cecilia es_ES
dc.contributor.author Balaguer Ramirez, Maria es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2021-04-09T03:31:32Z
dc.date.available 2021-04-09T03:31:32Z
dc.date.issued 2020-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164964
dc.description.abstract [EN] The particular operational conditions of electrochemical cells make the simultaneous characterization of both structural and transport properties challenging. The rapidity and flexibility of the acquisition of Raman spectra places this technique as a good candidate to measure operating properties and changes. Raman spectroscopy has been applied to well-known lanthanide ceria materials and the structural dependence on the dopant has been extracted. The evolution of Pr-doped ceria with temperature has been recorded by means of a commercial cell showing a clear increment in oxygen vacancies concentration. To elucidate the changes undergone by the electrolyte or membrane material in cell operation, the detailed construction of a homemade Raman cell is reported. The cell can be electrified, sealed and different gases can be fed into the cell chambers, so that the material behavior in the reaction surface and species evolved can be tracked. The results show that the Raman technique is a feasible and rather simple experimental option for operating characterization of solid-state electrochemical cell materials, although the treatment of the extracted data is not straightforward. es_ES
dc.description.sponsorship This research was funded by the Spanish Government (IJCI-2017-34110, RTI2018-102161 and SEV-2016-0683 grants). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Membranes es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Raman spectroscopy es_ES
dc.subject Doped ceria es_ES
dc.subject In-situ Raman cell es_ES
dc.title In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/membranes10070148 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//IJCI-2017-32476/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Solís, C.; Balaguer Ramirez, M.; Serra Alfaro, JM. (2020). In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study. Membranes. 10(7):1-16. https://doi.org/10.3390/membranes10070148 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/membranes10070148 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2077-0375 es_ES
dc.identifier.pmid 32664201 es_ES
dc.identifier.pmcid PMC7407173 es_ES
dc.relation.pasarela S\428841 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Maher, R. C., Duboviks, V., Offer, G. J., Kishimoto, M., Brandon, N. P., & Cohen, L. F. (2013). Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis. Fuel Cells, 13(4), 455-469. doi:10.1002/fuce.201200173 es_ES
dc.description.references Cheng, Z., Wang, J.-H., Choi, Y., Yang, L., Lin, M. C., & Liu, M. (2011). From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy & Environmental Science, 4(11), 4380. doi:10.1039/c1ee01758f es_ES
dc.description.references Liu, M., Lynch, M. E., Blinn, K., Alamgir, F. M., & Choi, Y. (2011). Rational SOFC material design: new advances and tools. Materials Today, 14(11), 534-546. doi:10.1016/s1369-7021(11)70279-6 es_ES
dc.description.references Maher, R. C., Shearing, P. R., Brightman, E., Brett, D. J. L., Brandon, N. P., & Cohen, L. F. (2015). Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy. Advanced Science, 3(1), 1500146. doi:10.1002/advs.201500146 es_ES
dc.description.references Laguna-Bercero, M. A., & Orera, V. M. (2011). Micro-spectroscopic study of the degradation of scandia and ceria stabilized zirconia electrolytes in solid oxide electrolysis cells. International Journal of Hydrogen Energy, 36(20), 13051-13058. doi:10.1016/j.ijhydene.2011.07.082 es_ES
dc.description.references Brett, D. J. L., Kucernak, A. R., Aguiar, P., Atkins, S. C., Brandon, N. P., Clague, R., … Vesovic, V. (2010). What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance. ChemPhysChem, 11(13), 2714-2731. doi:10.1002/cphc.201000487 es_ES
dc.description.references Sheppard, N. (1982). Recent developments in the vibrational spectroscopies (infrared, Raman, electron energy loss etc.) as applied to the structural analysis of species chemisorbed on metal surfaces. Journal of Molecular Structure, 80, 163-174. doi:10.1016/0022-2860(82)87225-6 es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d es_ES
dc.description.references Mogensen, M. (2000). Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 129(1-4), 63-94. doi:10.1016/s0167-2738(99)00318-5 es_ES
dc.description.references Balaguer, M., García-Fayos, J., Solís, C., & Serra, J. M. (2013). Fast Oxygen Separation Through SO2- and CO2-Stable Dual-Phase Membrane Based on NiFe2O4–Ce0.8Tb0.2O2-δ. Chemistry of Materials, 25(24), 4986-4993. doi:10.1021/cm4034963 es_ES
dc.description.references Degen, T., Sadki, M., Bron, E., König, U., & Nénert, G. (2014). The HighScore suite. Powder Diffraction, 29(S2), S13-S18. doi:10.1017/s0885715614000840 es_ES
dc.description.references Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. doi:10.1107/s0021889869006558 es_ES
dc.description.references Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-i es_ES
dc.description.references Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551 es_ES
dc.description.references Taniguchi, T., Watanabe, T., Sugiyama, N., Subramani, A. K., Wagata, H., Matsushita, N., & Yoshimura, M. (2009). Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy. The Journal of Physical Chemistry C, 113(46), 19789-19793. doi:10.1021/jp9049457 es_ES
dc.description.references Weber, W. H., Hass, K. C., & McBride, J. R. (1993). Raman study ofCeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B, 48(1), 178-185. doi:10.1103/physrevb.48.178 es_ES
dc.description.references Parayanthal, P., & Pollak, F. H. (1984). Raman Scattering in Alloy Semiconductors: «Spatial Correlation» Model. Physical Review Letters, 52(20), 1822-1825. doi:10.1103/physrevlett.52.1822 es_ES
dc.description.references Kosacki, I., Suzuki, T., Anderson, H. U., & Colomban, P. (2002). Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics, 149(1-2), 99-105. doi:10.1016/s0167-2738(02)00104-2 es_ES
dc.description.references McBride, J. R., Hass, K. C., Poindexter, B. D., & Weber, W. H. (1994). Raman and x‐ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics, 76(4), 2435-2441. doi:10.1063/1.357593 es_ES
dc.description.references Esther Jeyanthi, C., Siddheswaran, R., Kumar, P., Siva Shankar, V., & Rajarajan, K. (2014). Structural and spectroscopic studies of rare earths doped ceria (RELa,Sc,Yb:CeO2) nanopowders. Ceramics International, 40(6), 8599-8605. doi:10.1016/j.ceramint.2014.01.076 es_ES
dc.description.references Shirbhate, S., Nayyar, R. N., Ojha, P. K., Yadav, A. K., & Acharya, S. (2019). Exploration of Atomic Scale Changes during Oxygen Vacancy Dissociation Mechanism in Nanostructure Co-Doped Ceria: As Electrolytes for IT-SOFC. Journal of The Electrochemical Society, 166(8), F544-F554. doi:10.1149/2.1191908jes es_ES
dc.description.references Artini, C. (2018). Rare-Earth-Doped Ceria Systems and Their Performance as Solid Electrolytes: A Puzzling Tangle of Structural Issues at the Average and Local Scale. Inorganic Chemistry, 57(21), 13047-13062. doi:10.1021/acs.inorgchem.8b02131 es_ES
dc.description.references Spanier, J. E., Robinson, R. D., Zhang, F., Chan, S.-W., & Herman, I. P. (2001). Size-dependent properties ofCeO2−ynanoparticles as studied by Raman scattering. Physical Review B, 64(24). doi:10.1103/physrevb.64.245407 es_ES
dc.description.references Zhang, F., Chan, S.-W., Spanier, J. E., Apak, E., Jin, Q., Robinson, R. D., & Herman, I. P. (2002). Cerium oxide nanoparticles: Size-selective formation and structure analysis. Applied Physics Letters, 80(1), 127-129. doi:10.1063/1.1430502 es_ES
dc.description.references Suzuki, T., Kosacki, I., Anderson, H. U., & Colomban, P. (2004). Electrical Conductivity and Lattice Defects in Nanocrystalline Cerium Oxide Thin Films. Journal of the American Ceramic Society, 84(9), 2007-2014. doi:10.1111/j.1151-2916.2001.tb00950.x es_ES
dc.description.references Dohčević-Mitrović, Z. D., Šćepanović, M. J., Grujić-Brojčin, M. U., Popović, Z. V., Bošković, S. B., Matović, B. M., … Aldinger, F. (2006). The size and strain effects on the Raman spectra of Ce1−xNdxO2−δ (0≤x≤0.25) nanopowders. Solid State Communications, 137(7), 387-390. doi:10.1016/j.ssc.2005.12.006 es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w es_ES
dc.description.references Balaguer, M., Solís, C., Roitsch, S., & Serra, J. M. (2014). Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ+ Co 2 mol%. Dalton Trans., 43(11), 4305-4312. doi:10.1039/c3dt52167b es_ES
dc.description.references Acharya, S. A., Gaikwad, V. M., Sathe, V., & Kulkarni, S. K. (2014). Influence of gadolinium doping on the structure and defects of ceria under fuel cell operating temperature. Applied Physics Letters, 104(11), 113508. doi:10.1063/1.4869116 es_ES
dc.description.references Zallen, R., & Conwell, E. M. (1979). The effect of temperature on libron frequencies in molecular crystals: Implications for TTF-TCNQ. Solid State Communications, 31(8), 557-561. doi:10.1016/0038-1098(79)90252-7 es_ES
dc.description.references Hart, T. R., Aggarwal, R. L., & Lax, B. (1970). Temperature Dependence of Raman Scattering in Silicon. Physical Review B, 1(2), 638-642. doi:10.1103/physrevb.1.638 es_ES
dc.description.references Lughi, V., & Clarke, D. R. (2007). Temperature dependence of the yttria-stabilized zirconia Raman spectrum. Journal of Applied Physics, 101(5), 053524. doi:10.1063/1.2697347 es_ES
dc.description.references Long, R. Q., Huang, Y. P., & Wan, H. L. (1997). Surface Oxygen Species Over Cerium Oxide and Their Reactivities with Methane and Ethane by Means ofin situConfocal Microprobe Raman Spectroscopy. Journal of Raman Spectroscopy, 28(1), 29-32. doi:10.1002/(sici)1097-4555(199701)28:1<29::aid-jrs59>3.0.co;2-g es_ES
dc.description.references Pushkarev, V. V., Kovalchuk, V. I., & d’ Itri, J. L. (2004). Probing Defect Sites on the CeO2 Surface with Dioxygen. The Journal of Physical Chemistry B, 108(17), 5341-5348. doi:10.1021/jp0311254 es_ES
dc.description.references Weber, A., & McGinnis, E. A. (1960). The Raman spectrum of gaseous oxygen. Journal of Molecular Spectroscopy, 4(1-6), 195-200. doi:10.1016/0022-2852(60)90081-3 es_ES
dc.description.references Hornés, A., Bera, P., Fernández-García, M., Guerrero-Ruiz, A., & Martínez-Arias, A. (2012). Catalytic and redox properties of bimetallic Cu–Ni systems combined with CeO2 or Gd-doped CeO2 for methane oxidation and decomposition. Applied Catalysis B: Environmental, 111-112, 96-105. doi:10.1016/j.apcatb.2011.09.022 es_ES
dc.description.references Duboviks, V., Maher, R. C., Offer, G., Cohen, L. F., & Brandon, N. P. (2013). In-Operando Raman Spectroscopy Study of Passivation Effects on Ni-CGO Electrodes in CO2 Electrolysis Conditions. ECS Transactions, 57(1), 3111-3117. doi:10.1149/05701.3111ecst es_ES
dc.description.references Duboviks, V., Maher, R. C., Kishimoto, M., Cohen, L. F., Brandon, N. P., & Offer, G. J. (2014). A Raman spectroscopic study of the carbon deposition mechanism on Ni/CGO electrodes during CO/CO2 electrolysis. Phys. Chem. Chem. Phys., 16(26), 13063-13068. doi:10.1039/c4cp01503g es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem