- -

Intermediate rings of complex-valued continuous functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Intermediate rings of complex-valued continuous functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Acharyya, Amrita es_ES
dc.contributor.author Acharyya, Sudip Kumar es_ES
dc.contributor.author Bag, Sagarmoy es_ES
dc.contributor.author Sack, Joshua es_ES
dc.date.accessioned 2021-04-16T07:14:39Z
dc.date.available 2021-04-16T07:14:39Z
dc.date.issued 2021-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/165239
dc.description.abstract [EN] For a completely regular Hausdorff topological space X, let C(X, C) be the ring of complex-valued continuous functions on X, let C ∗ (X, C) be its subring of bounded functions, and let Σ(X, C) denote the collection of all the rings that lie between C ∗ (X, C) and C(X, C). We show that there is a natural correlation between the absolutely convex ideals/ prime ideals/maximal ideals/z-ideals/z ◦ -ideals in the rings P(X, C) in Σ(X, C) and in their real-valued counterparts P(X, C) ∩ C(X). These correlations culminate to the fact that the structure space of any such P(X, C) is βX. For any ideal I in C(X, C), we observe that C ∗ (X, C)+I is a member of Σ(X, C), which is further isomorphic to a ring of the type C(Y, C). Incidentally these are the only C-type intermediate rings in Σ(X, C) if and only if X is pseudocompact. We show that for any maximal ideal M in C(X, C), C(X, C)/M is an algebraically closed field, which is furthermore the algebraic closure of C(X)/M ∩C(X). We give a necessary and sufficient condition for the ideal CP (X, C) of C(X, C), which consists of all those functions whose support lie on an ideal P of closed sets in X, to be a prime ideal, and we examine a few special cases thereafter. At the end of the article, we find estimates for a few standard parameters concerning the zero-divisor graphs of a P(X, C) in Σ(X, C). es_ES
dc.description.sponsorship The authors wish to thank the referee for his/her remarks which improved the paper. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Z-ideals es_ES
dc.subject Z◦-ideals es_ES
dc.subject Algebraically closed field es_ES
dc.subject C-type rings es_ES
dc.subject Zero divisor graph es_ES
dc.title Intermediate rings of complex-valued continuous functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.13165
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Acharyya, A.; Acharyya, SK.; Bag, S.; Sack, J. (2021). Intermediate rings of complex-valued continuous functions. Applied General Topology. 22(1):47-65. https://doi.org/10.4995/agt.2021.13165 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.13165 es_ES
dc.description.upvformatpinicio 47 es_ES
dc.description.upvformatpfin 65 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\13165 es_ES
dc.description.references S. K. Acharyya, S. Bag, G. Bhunia and P. Rooj, Some new results on functions in C(X) having their support on ideals of closed sets, Quest. Math. 42 (2019), 1017-1090. https://doi.org/10.2989/16073606.2018.1504830 es_ES
dc.description.references S. K. Acharyya and S. K. Ghosh, On spaces X determined by the rings Ck(X) and C∞(X), J. Pure Math. 20 (2003), 9-16. es_ES
dc.description.references S. K. Acharyya and B. Bose, A correspondence between ideals and z-filters for certain rings of continuous functions-some remarks, Topology Appl. 160 (2013), 1603-1605. https://doi.org/10.1016/j.topol.2013.06.011 es_ES
dc.description.references S. K. Acharyya and S. K. Ghosh, Functions in C(X) with support lying on a class of subsets of X, Topology Proc. 35 (2010), 127-148. es_ES
dc.description.references S. K. Acharyya and S. K. Ghosh, A note on functions in C(X) with support lying on an ideal of closed subsets of X, Topology Proc. 40 (2012), 297-301. es_ES
dc.description.references S. K. Acharyya, K. C. Chattopadhyay and P. Rooj, A generalized version of the rings CK(X) and C∞(X)-an enquery about when they become Noetheri, Appl. Gen. Topol. 16, no. 1 (2015), 81-87. https://doi.org/10.4995/agt.2015.3247 es_ES
dc.description.references N. L. Alling, An application of valuation theory to rings of continuous real and complexvalued functions, Trans. Amer. Math. Soc. 109 (1963), 492-508. https://doi.org/10.1090/S0002-9947-1963-0154886-0 es_ES
dc.description.references F. Azarpanah, O. A. S. Karamzadeh and A. R. Aliabad, On Z◦-ideal in C(X), Fundamenta Mathematicae 160 (1999), 15-25. https://doi.org/10.4064/fm_1999_160_1_1_15_25 es_ES
dc.description.references F. Azarpanah and M. Motamedi, Zero-divisor graph of C(X), Acta Math. Hungar. 108, no. 1-2 (2005), 25-36. https://doi.org/10.1007/s10474-005-0205-z es_ES
dc.description.references F. Azarpanah, Algebraic properties of some compact spaces. Real Anal. Exchange 25, no. 1 (1999/00), 317-327. https://doi.org/10.2307/44153077 es_ES
dc.description.references F. Azarpanah and T. Soundararajan, When the family of functions vanishing at infinity is an ideal of C(X), Rocky Mountain J. Math. 31, no. 4 (2001), 1133-1140. https://doi.org/10.1216/rmjm/1021249434 es_ES
dc.description.references S. Bag, S. Acharyya and D. Mandal, A class of ideals in intermediate rings of continuous functions, Appl. Gen. Topol. 20, no. 1 (2019), 109-117. https://doi.org/10.4995/agt.2019.10171 es_ES
dc.description.references L. H. Byum and S. Watson, Prime and maximal ideals in subrings of C(X), Topology Appl. 40 (1991), 45-62. https://doi.org/10.1016/0166-8641(91)90057-S es_ES
dc.description.references R. E. Chandler, Hausdorff Compactifications, New York: M. Dekker, 1976. es_ES
dc.description.references D. De and S. K. Acharyya, Characterization of function rings between C∗(X) and C(X), Kyungpook Math. J. 46, no. 4 (2006) , 503-507. es_ES
dc.description.references J. M. Domínguez, J. Gómez and M.A. Mulero, Intermediate algebras between C∗ (X) and C(X) as rings of fractions of C∗ (X), Topology Appl. 77 (1997), 115-130. https://doi.org/10.1016/S0166-8641(96)00136-8 es_ES
dc.description.references L. Gillman and M. Jerison, Rings of Continuous Functions, New York: Van Nostrand Reinhold Co., 1960. https://doi.org/10.1007/978-1-4615-7819-2 es_ES
dc.description.references M. Mandelkar, Supports of continuous functions, Trans. Amer. Math. Soc. 156 (1971), 73-83. https://doi.org/10.1090/S0002-9947-1971-0275367-4 es_ES
dc.description.references W. Wm. McGovern and R. Raphael, Considering semi-clean rings of continuous functions, Topology Appl. 190 (2015), 99-108. https://doi.org/10.1016/j.topol.2015.05.001 es_ES
dc.description.references W. Murray, J. Sack and S. Watson, P-space and intermediate rings of continuous functions, Rocky Mountain J. Math. 47 (2017), 2757-2775. https://doi.org/10.1216/RMJ-2017-47-8-2757 es_ES
dc.description.references D. Plank, On a class of subalgebras of C(X) with applications to βX X, Fund. Math. 64 (1969), 41-54. https://doi.org/10.4064/fm-64-1-41-54 es_ES
dc.description.references L. Redlin and S. Watson, Maximal ideals in subalgebras of C(X), Proc. Amer. Math. Soc. 100, no. 4 (1987), 763-766. https://doi.org/10.2307/2046719 es_ES
dc.description.references L. Redlin and S. Watson, Structure spaces for rings of continuous functions with applications to real compactifications, Fundamenta Mathematicae 152 (1997), 151-163. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem