- -

CO(2)hydrogenation using bifunctional catalysts based on K-promoted iron oxide and zeolite: influence of the zeolite structure and crystal size

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CO(2)hydrogenation using bifunctional catalysts based on K-promoted iron oxide and zeolite: influence of the zeolite structure and crystal size

Mostrar el registro completo del ítem

García-Hurtado, E.; Rodríguez-Fernández, A.; Moliner Marin, M.; Martínez, C. (2020). CO(2)hydrogenation using bifunctional catalysts based on K-promoted iron oxide and zeolite: influence of the zeolite structure and crystal size. Catalysis Science & Technology. 10(16):5648-5658. https://doi.org/10.1039/d0cy00712a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165356

Ficheros en el ítem

Metadatos del ítem

Título: CO(2)hydrogenation using bifunctional catalysts based on K-promoted iron oxide and zeolite: influence of the zeolite structure and crystal size
Autor: García-Hurtado, Elisa Rodríguez-Fernández, Aida Moliner Marin, Manuel Martínez, Cristina
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] In the present manuscript, the influence of the zeolite structure and crystal size on bifunctional tandem catalysts combining K-promoted iron oxide (K/Fe3O4) with different zeolites has been studied for the ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/d0cy00712a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/d0cy00712a
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/Fundación Ramón Areces//CIVP18A3908/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/
info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F060/
info:eu-repo/grantAgreement/AEI//FPU2017%2F01521/
Agradecimientos:
This work was supported by the Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO) and RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE), by the Fundacion Ramon Areces through a research contract (CIVP18A3908) and ...[+]
Tipo: Artículo

References

Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52, 797-809. doi:10.1016/j.enpol.2012.10.046

Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175. doi:10.1016/s1364-0321(99)00011-8

Kannan, N., & Vakeesan, D. (2016). Solar energy for future world: - A review. Renewable and Sustainable Energy Reviews, 62, 1092-1105. doi:10.1016/j.rser.2016.05.022 [+]
Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52, 797-809. doi:10.1016/j.enpol.2012.10.046

Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175. doi:10.1016/s1364-0321(99)00011-8

Kannan, N., & Vakeesan, D. (2016). Solar energy for future world: - A review. Renewable and Sustainable Energy Reviews, 62, 1092-1105. doi:10.1016/j.rser.2016.05.022

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Abate, S., Barbera, K., Centi, G., Lanzafame, P., & Perathoner, S. (2016). Disruptive catalysis by zeolites. Catalysis Science & Technology, 6(8), 2485-2501. doi:10.1039/c5cy02184g

Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G. K., & Olah, G. A. (2014). Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem. Soc. Rev., 43(23), 7995-8048. doi:10.1039/c4cs00122b

Prieto, G. (2017). Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis. ChemSusChem, 10(6), 1056-1070. doi:10.1002/cssc.201601591

Dorner, R. W., Hardy, D. R., Williams, F. W., & Willauer, H. D. (2010). Heterogeneous catalytic CO2 conversion to value-added hydrocarbons. Energy & Environmental Science, 3(7), 884. doi:10.1039/c001514h

Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., … Sun, Y. (2017). Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 9(10), 1019-1024. doi:10.1038/nchem.2794

WEATHERBEE, G. (1984). Hydrogenation of CO2 on group VIII metals IV. Specific activities and selectivities of silica-supported Co, Fe, and Ru. Journal of Catalysis, 87(2), 352-362. doi:10.1016/0021-9517(84)90196-9

Lee, M.-D., Lee, J.-F., Chang, C.-S., & Dong, T.-Y. (1991). Effects of addition of chromium, manganese, or molybdenum to iron catalysts for carbon dioxide hydrogenation. Applied Catalysis, 72(2), 267-281. doi:10.1016/0166-9834(91)85055-z

Lee, J.-F., Chern, W.-S., Lee, M.-D., & Dong, T.-Y. (2009). Hydrogenation of carbon dioxide on iron catalysts doubly promoted with manganese and potassium. The Canadian Journal of Chemical Engineering, 70(3), 511-515. doi:10.1002/cjce.5450700314

Pijolat, M., Perrichon, V., Primet, M., & Bussiere, P. (1982). Hydrocondensation of carbon dioxide over an iron-alumina catalyst: A three-step model. Journal of Molecular Catalysis, 17(2-3), 367-380. doi:10.1016/0304-5102(82)85048-7

Guerrero-Ruiz, A., & Rodríguez-Ramos, I. (1985). Hydrogenation of CO2 on carbon-supported nickel and cobalt. Reaction Kinetics and Catalysis Letters, 29(1), 93-99. doi:10.1007/bf02067954

Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., & Gu, S. (2014). A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol., 4(8), 2210-2229. doi:10.1039/c4cy00327f

Ramirez, A., Gevers, L., Bavykina, A., Ould-Chikh, S., & Gascon, J. (2018). Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins. ACS Catalysis, 8(10), 9174-9182. doi:10.1021/acscatal.8b02892

Anderson, R. B., Friedel, R. A., & Storch, H. H. (1951). Fischer‐Tropsch Reaction Mechanism Involving Stepwise Growth of Carbon Chain. The Journal of Chemical Physics, 19(3), 313-319. doi:10.1063/1.1748201

Griboval-Constant, A., Butel, A., Ordomsky, V. V., Chernavskii, P. A., & Khodakov, A. Y. (2014). Cobalt and iron species in alumina supported bimetallic catalysts for Fischer–Tropsch reaction. Applied Catalysis A: General, 481, 116-126. doi:10.1016/j.apcata.2014.04.047

Patzlaff, J., Liu, Y., Graffmann, C., & Gaube, J. (1999). Studies on product distributions of iron and cobalt catalyzed Fischer–Tropsch synthesis. Applied Catalysis A: General, 186(1-2), 109-119. doi:10.1016/s0926-860x(99)00167-2

Patzlaff, J., Liu, Y., Graffmann, C., & Gaube, J. (2002). Interpretation and kinetic modeling of product distributions of cobalt catalyzed Fischer–Tropsch synthesis. Catalysis Today, 71(3-4), 381-394. doi:10.1016/s0920-5861(01)00465-5

Torres Galvis, H. M., Bitter, J. H., Khare, C. B., Ruitenbeek, M., Dugulan, A. I., & de Jong, K. P. (2012). Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins. Science, 335(6070), 835-838. doi:10.1126/science.1215614

Kim, H., Choi, D.-H., Nam, S.-S., Choi, M.-J., & Lee, K.-W. (1998). The selective synthesis of lower olefins(C2 - C4) by the CO2 hydrogenation over Iron catalysts promoted with Potassium and supported on ion exchanged(H, K) Zeolite-Y. Advances in Chemical Conversions for Mitigating Carbon Dioxide, Proceedings of the Fourth International Conference on Carbon Dioxide Utilization, 407-410. doi:10.1016/s0167-2991(98)80782-9

Nam, S.-S., Kim, H., Kishan, G., Choi, M.-J., & Lee, K.-W. (1999). Catalytic conversion of carbon dioxide into hydrocarbons over iron supported on alkali ion-exchanged Y-zeolite catalysts. Applied Catalysis A: General, 179(1-2), 155-163. doi:10.1016/s0926-860x(98)00322-6

Dokania, A., Ramirez, A., Bavykina, A., & Gascon, J. (2018). Heterogeneous Catalysis for the Valorization of CO2: Role of Bifunctional Processes in the Production of Chemicals. ACS Energy Letters, 4(1), 167-176. doi:10.1021/acsenergylett.8b01910

Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., … Sun, J. (2017). Directly converting CO2 into a gasoline fuel. Nature Communications, 8(1). doi:10.1038/ncomms15174

Ramirez, A., Dutta Chowdhury, A., Dokania, A., Cnudde, P., Caglayan, M., Yarulina, I., … Gascon, J. (2019). Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics. ACS Catalysis, 9(7), 6320-6334. doi:10.1021/acscatal.9b01466

Mintova, S., Gilson, J.-P., & Valtchev, V. (2013). Advances in nanosized zeolites. Nanoscale, 5(15), 6693. doi:10.1039/c3nr01629c

Mintova, S., Jaber, M., & Valtchev, V. (2015). Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 44(20), 7207-7233. doi:10.1039/c5cs00210a

Rimer, J. D., Kumar, M., Li, R., Lupulescu, A. I., & Oleksiak, M. D. (2014). Tailoring the physicochemical properties of zeolite catalysts. Catal. Sci. Technol., 4(11), 3762-3771. doi:10.1039/c4cy00858h

Díaz-Rey, M. R., Paris, C., Martínez-Franco, R., Moliner, M., Martínez, C., & Corma, A. (2017). Efficient Oligomerization of Pentene into Liquid Fuels on Nanocrystalline Beta Zeolites. ACS Catalysis, 7(9), 6170-6178. doi:10.1021/acscatal.7b00817

Gallego, E. M., Paris, C., Díaz-Rey, M. R., Martínez-Armero, M. E., Martínez-Triguero, J., Martínez, C., … Corma, A. (2017). Simple organic structure directing agents for synthesizing nanocrystalline zeolites. Chemical Science, 8(12), 8138-8149. doi:10.1039/c7sc02858j

Gallego, E. M., Li, C., Paris, C., Martín, N., Martínez-Triguero, J., Boronat, M., … Corma, A. (2018). Making Nanosized CHA Zeolites with Controlled Al Distribution for Optimizing Methanol-to-Olefin Performance. Chemistry - A European Journal, 24(55), 14631-14635. doi:10.1002/chem.201803637

Martínez-Franco, R., Paris, C., Martínez-Armero, M. E., Martínez, C., Moliner, M., & Corma, A. (2016). High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 7(1), 102-108. doi:10.1039/c5sc03019f

Camblor, M. A., Corma, A., & Valencia, S. (1998). Characterization of nanocrystalline zeolite Beta. Microporous and Mesoporous Materials, 25(1-3), 59-74. doi:10.1016/s1387-1811(98)00172-3

Boronat, M., & Corma, A. (2019). What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catalysis, 9(2), 1539-1548. doi:10.1021/acscatal.8b04317

Ramirez, A., Ould‐Chikh, S., Gevers, L., Chowdhury, A. D., Abou‐Hamad, E., Aguilar‐Tapia, A., … Gascon, J. (2019). Tandem Conversion of CO 2 to Valuable Hydrocarbons in Highly Concentrated Potassium Iron Catalysts. ChemCatChem, 11(12), 2879-2886. doi:10.1002/cctc.201900762

Arora, S. S., Shi, Z., & Bhan, A. (2019). Mechanistic Basis for Effects of High-Pressure H2 Cofeeds on Methanol-to-Hydrocarbons Catalysis over Zeolites. ACS Catalysis, 9(7), 6407-6414. doi:10.1021/acscatal.9b00969

Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738

Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095

Tang, X., Zhou, H., Qian, W., Wang, D., Jin, Y., & Wei, F. (2008). High Selectivity Production of Propylene from n-Butene: Thermodynamic and Experimental Study Using a Shape Selective Zeolite Catalyst. Catalysis Letters, 125(3-4), 380-385. doi:10.1007/s10562-008-9564-8

Weber, J. L., Dugulan, I., de Jongh, P. E., & de Jong, K. P. (2018). Bifunctional Catalysis for the Conversion of Synthesis Gas to Olefins and Aromatics. ChemCatChem, 10(5), 1107-1112. doi:10.1002/cctc.201701667

Vermeiren, W., & Gilson, J.-P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161. doi:10.1007/s11244-009-9271-8

Tsai, T. (1999). Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts. Applied Catalysis A: General, 181(2), 355-398. doi:10.1016/s0926-860x(98)00396-2

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem