- -

Pd supported on mixed metal oxide as an efficient catalyst for the reductive amination of bio-derived acetol to 2-methylpiperazine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pd supported on mixed metal oxide as an efficient catalyst for the reductive amination of bio-derived acetol to 2-methylpiperazine

Mostrar el registro completo del ítem

Mazarío-Santa-Pau, J.; Raad, Z.; Concepción Heydorn, P.; Cerdá-Moreno, C.; Domine, ME. (2020). Pd supported on mixed metal oxide as an efficient catalyst for the reductive amination of bio-derived acetol to 2-methylpiperazine. Catalysis Science & Technology. 10(23):8049-8063. https://doi.org/10.1039/d0cy01423k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165358

Ficheros en el ítem

Metadatos del ítem

Título: Pd supported on mixed metal oxide as an efficient catalyst for the reductive amination of bio-derived acetol to 2-methylpiperazine
Autor: Mazarío-Santa-Pau, Jaime Raad, Zaher Concepción Heydorn, Patricia Cerdá-Moreno, Cristina Domine, Marcelo Eduardo
Fecha difusión:
Resumen:
[EN] An efficient process for synthesizing a high added-value N-heterocycle (2-methylpiperazine, 2-MP) via reductive amination of hydroxyacetone or acetol (product of the selective dehydration of glycerol) with ethylenediamine ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/d0cy01423k
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/D0CY01423K
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/
Agradecimientos:
The authors express their gratitude to the Spanish Government for the funding (MICINN: CTQ2015-67592, PGC2018-097277-B-I00 and Severo Ochoa Program: SEV-2016-0683). J. M. thanks the MICINN (CTQ2015-67592) for his PhD ...[+]
Tipo: Artículo

References

Stöcker, M. (2008). Biofuels and Biomass‐To‐Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass using Porous Materials. Angewandte Chemie International Edition, 47(48), 9200-9211. doi:10.1002/anie.200801476

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Wang, Y., Furukawa, S., Fu, X., & Yan, N. (2019). Organonitrogen Chemicals from Oxygen-Containing Feedstock over Heterogeneous Catalysts. ACS Catalysis, 10(1), 311-335. doi:10.1021/acscatal.9b03744 [+]
Stöcker, M. (2008). Biofuels and Biomass‐To‐Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass using Porous Materials. Angewandte Chemie International Edition, 47(48), 9200-9211. doi:10.1002/anie.200801476

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Wang, Y., Furukawa, S., Fu, X., & Yan, N. (2019). Organonitrogen Chemicals from Oxygen-Containing Feedstock over Heterogeneous Catalysts. ACS Catalysis, 10(1), 311-335. doi:10.1021/acscatal.9b03744

Sato, S., Akiyama, M., Takahashi, R., Hara, T., Inui, K., & Yokota, M. (2008). Vapor-phase reaction of polyols over copper catalysts. Applied Catalysis A: General, 347(2), 186-191. doi:10.1016/j.apcata.2008.06.013

Velasquez, M., Santamaria, A., & Batiot-Dupeyrat, C. (2014). Selective conversion of glycerol to hydroxyacetone in gas phase over La2CuO4 catalyst. Applied Catalysis B: Environmental, 160-161, 606-613. doi:10.1016/j.apcatb.2014.06.006

Célerier, S., Morisset, S., Batonneau-Gener, I., Belin, T., Younes, K., & Batiot-Dupeyrat, C. (2018). Glycerol dehydration to hydroxyacetone in gas phase over copper supported on magnesium oxide (hydroxide) fluoride catalysts. Applied Catalysis A: General, 557, 135-144. doi:10.1016/j.apcata.2018.03.022

Mazarío, J., Concepción, P., Ventura, M., & Domine, M. E. (2020). Continuous catalytic process for the selective dehydration of glycerol over Cu-based mixed oxide. Journal of Catalysis, 385, 160-175. doi:10.1016/j.jcat.2020.03.010

Martin, R. J. (1997). Modes of action of anthelmintic drugs. The Veterinary Journal, 154(1), 11-34. doi:10.1016/s1090-0233(05)80005-x

Rochelle, G. T. (2009). Amine Scrubbing for CO 2 Capture. Science, 325(5948), 1652-1654. doi:10.1126/science.1176731

Freeman, S. A., Dugas, R., Van Wagener, D. H., Nguyen, T., & Rochelle, G. T. (2010). Carbon dioxide capture with concentrated, aqueous piperazine. International Journal of Greenhouse Gas Control, 4(2), 119-124. doi:10.1016/j.ijggc.2009.10.008

R. D. Ashford , Ashford's Dictionary of Industrial Chemicals , Wavelength Publications , Saltash , 3rd edn, 2011

E.-L. Dreher , K. K.Beutel , J. D.Myers , T.Lübbe , S.Krieger and L. H.Pottenger , in Ullmann's Encyclopedia of Industrial Chemistry , Wiley-VCH , Weinheim , 2014

K. Weissermel , H.-J.Arpe , C. R.Lindley and S.Hawkins , in Industrial Organic Chemistry , Wiley-VCH , 2003 , pp. 159–161

Kitchen, L. J., & Pollard, C. B. (1947). Derivatives of Piperazine. XXI. Synthesis of Piperazine and C-Substituted Piperazines. Journal of the American Chemical Society, 69(4), 854-855. doi:10.1021/ja01196a034

Bai, G., Fan, X., Wang, H., Xu, J., He, F., & Ning, H. (2009). Effects of the preparation methods on the performance of the Cu–Cr–Fe/γ-Al2O3 catalysts for the synthesis of 2-methylpiperazine. Catalysis Communications, 10(15), 2031-2035. doi:10.1016/j.catcom.2009.07.025

Narender, N., Srinivasu, P., Kulkarni, S. ., & Raghavan, K. . (2001). Intermolecular Cyclization of Diethanolamine and Methylamine to N,N′-Dimethylpiperazine over Zeolites under High Pressure. Journal of Catalysis, 202(2), 430-433. doi:10.1006/jcat.2001.3291

Nagaiah, K., Rao, A. S., Kulkarni, S. J., Subrahmanyam, M., & Rao, A. V. R. (1994). Intermolecular Cyclization of Diethanolamine and Methylamine to N-Methylpiperazine over Zeolites. Journal of Catalysis, 147(1), 349-351. doi:10.1006/jcat.1994.1147

Domine, M. E., Hernández-Soto, M. C., Navarro, M. T., & Pérez, Y. (2011). Pt and Pd nanoparticles supported on structured materials as catalysts for the selective reductive amination of carbonyl compounds. Catalysis Today, 172(1), 13-20. doi:10.1016/j.cattod.2011.05.013

Domine, M. E., Hernández-Soto, M. C., & Pérez, Y. (2011). Development of metal nanoparticles supported materials as efficient catalysts for reductive amination reactions using high-throughput experimentation. Catalysis Today, 159(1), 2-11. doi:10.1016/j.cattod.2010.08.011

H. Blaser , U.Siegrist , H.Steiner , M.Studer , R.Sheldon and H.van Bekkum , Fine chemicals through heterogeneous catalysis , Wiley/VCH , Weinheim , 1st edn, 2001

Baiker, A., & Kijenski, J. (1985). Catalytic Synthesis of Higher Aliphatic Amines from the Corresponding Alcohols. Catalysis Reviews, 27(4), 653-697. doi:10.1080/01614948508064235

Baxter, E. W., & Reitz, A. B. (2002). Reductive Aminations of Carbonyl Compounds with Borohydride and Borane Reducing Agents. Organic Reactions, 1-714. doi:10.1002/0471264180.or059.01

Pelter, A., Rosser, R. M., & Mills, S. (1984). Reductive aminations of ketones and aldehydes using borane–pyridine. J. Chem. Soc., Perkin Trans. 1, (0), 717-720. doi:10.1039/p19840000717

Rubio-Pérez, L., Pérez-Flores, F. J., Sharma, P., Velasco, L., & Cabrera, A. (2008). Stable Preformed Chiral Palladium Catalysts for the One-Pot Asymmetric Reductive Amination of Ketones. Organic Letters, 11(2), 265-268. doi:10.1021/ol802336m

Imao, D., Fujihara, S., Yamamoto, T., Ohta, T., & Ito, Y. (2005). Effective reductive amination of carbonyl compounds with hydrogen catalyzed by iridium complex in organic solvent and in ionic liquid. Tetrahedron, 61(29), 6988-6992. doi:10.1016/j.tet.2005.05.024

Enthaler, S. (2010). Synthesis of Secondary Amines by Iron-Catalyzed Reductive Amination. ChemCatChem, 2(11), 1411-1415. doi:10.1002/cctc.201000180

Candeias, N. R., & Afonso, C. A. M. (2005). Preparation of non-fused heterocycles in zeolites and mesoporous materials. Journal of Molecular Catalysis A: Chemical, 242(1-2), 195-217. doi:10.1016/j.molcata.2005.07.042

Vidal, J. D., Climent, M. J., Concepcion, P., Corma, A., Iborra, S., & Sabater, M. J. (2015). Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 5(10), 5812-5821. doi:10.1021/acscatal.5b01113

Ueda, W., Yokoyama, T., Moro-Oka, Y., & Ikawa, T. (1984). Catalytic synthesis of vinyl ketones over metal oxide catalysts using methanol as the vinylating agent. Journal of the Chemical Society, Chemical Communications, (1), 39. doi:10.1039/c39840000039

Liang, G., Wang, A., Li, L., Xu, G., Yan, N., & Zhang, T. (2017). Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones. Angewandte Chemie International Edition, 56(11), 3050-3054. doi:10.1002/anie.201610964

Mazarío, J., Parreño Romero, M., Concepción, P., Chávez-Sifontes, M., Spanevello, R. A., Comba, M. B., … Domine, M. E. (2019). Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone. Green Chemistry, 21(17), 4769-4785. doi:10.1039/c9gc01857c

BORCHERT, H., JURGENS, B., ZIELASEK, V., RUPPRECHTER, G., GIORGIO, S., HENRY, C., & BAUMER, M. (2007). Pd nanoparticles with highly defined structure on MgO as model catalysts: An FTIR study of the interaction with CO, O2, and H2 under ambient conditions. Journal of Catalysis, 247(2), 145-154. doi:10.1016/j.jcat.2007.02.002

Tessier, D., Rakai, A., & Bozon-Verduraz, F. (1992). Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium–alumina catalysts. J. Chem. Soc., Faraday Trans., 88(5), 741-749. doi:10.1039/ft9928800741

Bertarione, S., Scarano, D., Zecchina, A., Johánek, V., Hoffmann, J., Schauermann, S., … Freund, H.-J. (2004). Surface Reactivity of Pd Nanoparticles Supported on Polycrystalline Substrates As Compared to Thin Film Model Catalysts:  Infrared Study of CO Adsorption. The Journal of Physical Chemistry B, 108(11), 3603-3613. doi:10.1021/jp036718t

Ferri, D., Mondelli, C., Krumeich, F., & Baiker, A. (2006). Discrimination of Active Palladium Sites in Catalytic Liquid-Phase Oxidation of Benzyl Alcohol. The Journal of Physical Chemistry B, 110(46), 22982-22986. doi:10.1021/jp065779z

K. H. Oehr and J.Mckinley , in Advances in Thermochemical Biomass Conversion , ed. A. V. Bridgwater , Springer , Dordrecht , 1993 , pp. 1452–1455

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem