- -

Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Li, Chengeng es_ES
dc.contributor.author Vidal Moya, José Alejandro es_ES
dc.contributor.author Miguel, Pablo J. es_ES
dc.contributor.author Dedecek, Jiri es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-04-21T03:31:30Z
dc.date.available 2021-04-21T03:31:30Z
dc.date.issued 2018-08 es_ES
dc.identifier.issn 2155-5435 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165405
dc.description.abstract [EN] Controlling the location of acid sites in zeolites can have a great effect on catalysis. In this work we face the objective of directing the location of AI into the 10R channels of ZSM-5 by taking advantage of the structural preference of B to occupy certain positions at the channel intersections, as suggested by theoretical calculations. The synthesis of B-Al-ZSM-5 zeolites with variable Si/Al and Si/B ratios, followed by B removal in a postsynthesis treatment, produces ZSM-5 samples enriched in Al occupying positions at 10R channels. The location of the acid sites is determined on the basis of the product distribution of 1-hexene cracking as a test reaction. The higher selectivity to propene and lower C-4(=)/C-3(=) ratio in the samples synthesized with B and subsequently deboronated can be related to a larger concentration of acid sites in 10R channels, where monomolecular cracking occurs. Finally, several ZSM-5 samples have been tested in the methanol to propene reaction, and those synthesized through the B -assisted method show longer catalytic lifetime, higher propene yield, and lower yield of alkanes and aromatics. es_ES
dc.description.sponsorship This work was supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and the Spanish Government-MINECO through "Severo Ochoa" (SEV-2016-0683) and CTQ2015-70126-R. The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. Red Espanola de Supercomputacion (RES) and Centre de Calcul de la Universitat de Valencia are gratefully acknowledged for computational resources and technical support. C.L. acknowledges the China Scholarship Council (CSC) for a Ph.D. fellowship es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Zeolites es_ES
dc.subject DFT es_ES
dc.subject Al siting es_ES
dc.subject Boron ZSM-5 es_ES
dc.subject MTO es_ES
dc.subject Catalytic cracking es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acscatal.8b02112 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-70126-R/ES/DISEÑO DE CATALIZADORES ZEOLITICOS PARA LA OPTIMIZACION DE PROCESOS QUIMICOS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Li, C.; Vidal Moya, JA.; Miguel, PJ.; Dedecek, J.; Boronat Zaragoza, M.; Corma Canós, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis. 8(8):7688-7697. https://doi.org/10.1021/acscatal.8b02112 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acscatal.8b02112 es_ES
dc.description.upvformatpinicio 7688 es_ES
dc.description.upvformatpfin 7697 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\385399 es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Brand, H. V., Curtiss, L. A., & Iton, L. E. (1993). Ab initio molecular orbital cluster studies of the zeolite ZSM-5. 1. Proton affinities. The Journal of Physical Chemistry, 97(49), 12773-12782. doi:10.1021/j100151a024 es_ES
dc.description.references Kassab, E., Seiti, K., & Allavena, M. (1988). Determination of structure and acidity scales in zeolite systems by ab initio and pseudopotential calculations. The Journal of Physical Chemistry, 92(23), 6705-6709. doi:10.1021/j100334a043 es_ES
dc.description.references Brändle, M., & Sauer, J. (1998). Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites. Journal of the American Chemical Society, 120(7), 1556-1570. doi:10.1021/ja9729037 es_ES
dc.description.references Jones, A. J., Carr, R. T., Zones, S. I., & Iglesia, E. (2014). Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. Journal of Catalysis, 312, 58-68. doi:10.1016/j.jcat.2014.01.007 es_ES
dc.description.references Jones, A. J., & Iglesia, E. (2015). The Strength of Brønsted Acid Sites in Microporous Aluminosilicates. ACS Catalysis, 5(10), 5741-5755. doi:10.1021/acscatal.5b01133 es_ES
dc.description.references Derouane, E. G. (1998). Zeolites as solid solvents1Paper presented at the International Symposium `Organic Chemistry and Catalysis’ on the occasion of the 65th birthday of Prof. H. van Bekkum, Delft, Netherlands, 2–3 October 1997.1. Journal of Molecular Catalysis A: Chemical, 134(1-3), 29-45. doi:10.1016/s1381-1169(98)00021-1 es_ES
dc.description.references Knott, B. C., Nimlos, C. T., Robichaud, D. J., Nimlos, M. R., Kim, S., & Gounder, R. (2017). Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catalysis, 8(2), 770-784. doi:10.1021/acscatal.7b03676 es_ES
dc.description.references Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731d es_ES
dc.description.references Jones, A. J., & Iglesia, E. (2014). Kinetic, Spectroscopic, and Theoretical Assessment of Associative and Dissociative Methanol Dehydration Routes in Zeolites. Angewandte Chemie International Edition, 53(45), 12177-12181. doi:10.1002/anie.201406823 es_ES
dc.description.references Wang, S., & Iglesia, E. (2017). Catalytic diversity conferred by confinement of protons within porous aluminosilicates in Prins condensation reactions. Journal of Catalysis, 352, 415-435. doi:10.1016/j.jcat.2017.06.012 es_ES
dc.description.references Ghorbanpour, A., Rimer, J. D., & Grabow, L. C. (2014). Periodic, vdW-corrected density functional theory investigation of the effect of Al siting in H-ZSM-5 on chemisorption properties and site-specific acidity. Catalysis Communications, 52, 98-102. doi:10.1016/j.catcom.2014.04.005 es_ES
dc.description.references Mallikarjun Sharada, S., Zimmerman, P. M., Bell, A. T., & Head-Gordon, M. (2013). Insights into the Kinetics of Cracking and Dehydrogenation Reactions of Light Alkanes in H-MFI. The Journal of Physical Chemistry C, 117(24), 12600-12611. doi:10.1021/jp402506m es_ES
dc.description.references Janda, A., & Bell, A. T. (2013). Effects of Si/Al Ratio on the Distribution of Framework Al and on the Rates of Alkane Monomolecular Cracking and Dehydrogenation in H-MFI. Journal of the American Chemical Society, 135(51), 19193-19207. doi:10.1021/ja4081937 es_ES
dc.description.references Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657 es_ES
dc.description.references Van Speybroeck, V., De Wispelaere, K., Van der Mynsbrugge, J., Vandichel, M., Hemelsoet, K., & Waroquier, M. (2014). First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem. Soc. Rev., 43(21), 7326-7357. doi:10.1039/c4cs00146j es_ES
dc.description.references Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007 es_ES
dc.description.references Svelle, S., Joensen, F., Nerlov, J., Olsbye, U., Lillerud, K.-P., Kolboe, S., & Bjørgen, M. (2006). Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5:  Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes. Journal of the American Chemical Society, 128(46), 14770-14771. doi:10.1021/ja065810a es_ES
dc.description.references BJORGEN, M., SVELLE, S., JOENSEN, F., NERLOV, J., KOLBOE, S., BONINO, F., … OLSBYE, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 249(2), 195-207. doi:10.1016/j.jcat.2007.04.006 es_ES
dc.description.references Wang, S., Chen, Y., Wei, Z., Qin, Z., Ma, H., Dong, M., … Wang, J. (2015). Polymethylbenzene or Alkene Cycle? Theoretical Study on Their Contribution to the Process of Methanol to Olefins over H-ZSM-5 Zeolite. The Journal of Physical Chemistry C, 119(51), 28482-28498. doi:10.1021/acs.jpcc.5b10299 es_ES
dc.description.references Teketel, S., Olsbye, U., Lillerud, K.-P., Beato, P., & Svelle, S. (2010). Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Microporous and Mesoporous Materials, 136(1-3), 33-41. doi:10.1016/j.micromeso.2010.07.013 es_ES
dc.description.references Pinar, A. B., Márquez-Álvarez, C., Grande-Casas, M., & Pérez-Pariente, J. (2009). Template-controlled acidity and catalytic activity of ferrierite crystals. Journal of Catalysis, 263(2), 258-265. doi:10.1016/j.jcat.2009.02.017 es_ES
dc.description.references Román-Leshkov, Y., Moliner, M., & Davis, M. E. (2010). Impact of Controlling the Site Distribution of Al Atoms on Catalytic Properties in Ferrierite-Type Zeolites. The Journal of Physical Chemistry C, 115(4), 1096-1102. doi:10.1021/jp106247g es_ES
dc.description.references Di Iorio, J. R., & Gounder, R. (2016). Controlling the Isolation and Pairing of Aluminum in Chabazite Zeolites Using Mixtures of Organic and Inorganic Structure-Directing Agents. Chemistry of Materials, 28(7), 2236-2247. doi:10.1021/acs.chemmater.6b00181 es_ES
dc.description.references Di Iorio, J. R., Nimlos, C. T., & Gounder, R. (2017). Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity. ACS Catalysis, 7(10), 6663-6674. doi:10.1021/acscatal.7b01273 es_ES
dc.description.references Liu, M., Yokoi, T., Yoshioka, M., Imai, H., Kondo, J. N., & Tatsumi, T. (2014). Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs. Physical Chemistry Chemical Physics, 16(9), 4155. doi:10.1039/c3cp54297a es_ES
dc.description.references Dedecek, J., Balgová, V., Pashkova, V., Klein, P., & Wichterlová, B. (2012). Synthesis of ZSM-5 Zeolites with Defined Distribution of Al Atoms in the Framework and Multinuclear MAS NMR Analysis of the Control of Al Distribution. Chemistry of Materials, 24(16), 3231-3239. doi:10.1021/cm301629a es_ES
dc.description.references Pashkova, V., Klein, P., Dedecek, J., Tokarová, V., & Wichterlová, B. (2015). Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework. Microporous and Mesoporous Materials, 202, 138-146. doi:10.1016/j.micromeso.2014.09.056 es_ES
dc.description.references Yokoi, T., Mochizuki, H., Namba, S., Kondo, J. N., & Tatsumi, T. (2015). Control of the Al Distribution in the Framework of ZSM-5 Zeolite and Its Evaluation by Solid-State NMR Technique and Catalytic Properties. The Journal of Physical Chemistry C, 119(27), 15303-15315. doi:10.1021/acs.jpcc.5b03289 es_ES
dc.description.references Liang, T., Chen, J., Qin, Z., Li, J., Wang, P., Wang, S., … Wang, J. (2016). Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting. ACS Catalysis, 6(11), 7311-7325. doi:10.1021/acscatal.6b01771 es_ES
dc.description.references Pashkova, V., Sklenak, S., Klein, P., Urbanova, M., & Dědeček, J. (2016). Location of Framework Al Atoms in the Channels of ZSM-5: Effect of the (Hydrothermal) Synthesis. Chemistry - A European Journal, 22(12), 3937-3941. doi:10.1002/chem.201503758 es_ES
dc.description.references Yokoi, T., Mochizuki, H., Biligetu, T., Wang, Y., & Tatsumi, T. (2017). Unique Al Distribution in the MFI Framework and Its Impact on Catalytic Properties. Chemistry Letters, 46(6), 798-800. doi:10.1246/cl.170156 es_ES
dc.description.references Sklenak, S., Dědeček, J., Li, C., Wichterlová, B., Gábová, V., Sierka, M., & Sauer, J. (2007). Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined High-Resolution27Al NMR Spectroscopy and Quantum Mechanics / Molecular Mechanics Study of ZSM-5. Angewandte Chemie International Edition, 46(38), 7286-7289. doi:10.1002/anie.200702628 es_ES
dc.description.references Sklenak, S., Dědeček, J., Li, C., Wichterlová, B., Gábová, V., Sierka, M., & Sauer, J. (2009). Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Phys. Chem. Chem. Phys., 11(8), 1237-1247. doi:10.1039/b807755j es_ES
dc.description.references Dědeček, J., Sobalík, Z., & Wichterlová, B. (2012). Siting and Distribution of Framework Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis. Catalysis Reviews, 54(2), 135-223. doi:10.1080/01614940.2012.632662 es_ES
dc.description.references Wang, S., Wei, Z., Chen, Y., Qin, Z., Ma, H., Dong, M., … Wang, J. (2015). Methanol to Olefins over H-MCM-22 Zeolite: Theoretical Study on the Catalytic Roles of Various Pores. ACS Catalysis, 5(2), 1131-1144. doi:10.1021/cs501232r es_ES
dc.description.references Chen, J., Liang, T., Li, J., Wang, S., Qin, Z., Wang, P., … Wang, J. (2016). Regulation of Framework Aluminum Siting and Acid Distribution in H-MCM-22 by Boron Incorporation and Its Effect on the Catalytic Performance in Methanol to Hydrocarbons. ACS Catalysis, 6(4), 2299-2313. doi:10.1021/acscatal.5b02862 es_ES
dc.description.references Zhu, Q., Kondo, J. N., Yokoi, T., Setoyama, T., Yamaguchi, M., Takewaki, T., … Tatsumi, T. (2011). The influence of acidities of boron- and aluminium-containing MFI zeolites on co-reaction of methanol and ethene. Physical Chemistry Chemical Physics, 13(32), 14598. doi:10.1039/c1cp20338j es_ES
dc.description.references Yang, Y., Sun, C., Du, J., Yue, Y., Hua, W., Zhang, C., … Xu, H. (2012). The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catalysis Communications, 24, 44-47. doi:10.1016/j.catcom.2012.03.013 es_ES
dc.description.references Hu, Z., Zhang, H., Wang, L., Zhang, H., Zhang, Y., Xu, H., … Tang, Y. (2014). Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catal. Sci. Technol., 4(9), 2891-2895. doi:10.1039/c4cy00376d es_ES
dc.description.references Yaripour, F., Shariatinia, Z., Sahebdelfar, S., & Irandoukht, A. (2015). Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction. Microporous and Mesoporous Materials, 203, 41-53. doi:10.1016/j.micromeso.2014.10.024 es_ES
dc.description.references Nachtigallová, D., Nachtigall, P., Sierka, M., & Sauer, J. (1999). Coordination and siting of Cu+ ions in ZSM-5: A combined quantum mechanics/interatomic potential function study. Physical Chemistry Chemical Physics, 1(8), 2019-2026. doi:10.1039/a900214f es_ES
dc.description.references Schröder, K.-P., Sauer, J., Leslie, M., & A.Catlow, C. R. (1992). Siting of AI and bridging hydroxyl groups in ZSM-5: A computer simulation study. Zeolites, 12(1), 20-23. doi:10.1016/0144-2449(92)90004-9 es_ES
dc.description.references Schmidt, J. E., Fu, D., Deem, M. W., & Weckhuysen, B. M. (2016). Template–Framework Interactions in Tetraethylammonium‐Directed Zeolite Synthesis. Angewandte Chemie International Edition, 55(52), 16044-16048. doi:10.1002/anie.201609053 es_ES
dc.description.references Dědeček, J., Kaucký, D., Wichterlová, B., & Gonsiorová, O. (2002). Co2+ions as probes of Al distribution in the framework of zeolites. ZSM-5 study. Phys. Chem. Chem. Phys., 4(21), 5406-5413. doi:10.1039/b203966b es_ES
dc.description.references Blay, V., Miguel, P. J., & Corma, A. (2017). Theta-1 zeolite catalyst for increasing the yield of propene when cracking olefins and its potential integration with an olefin metathesis unit. Catalysis Science & Technology, 7(24), 5847-5859. doi:10.1039/c7cy01502j es_ES
dc.description.references Sun, X., Mueller, S., Shi, H., Haller, G. L., Sanchez-Sanchez, M., van Veen, A. C., & Lercher, J. A. (2014). On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. Journal of Catalysis, 314, 21-31. doi:10.1016/j.jcat.2014.03.013 es_ES
dc.description.references Teketel, S., Svelle, S., Lillerud, K.-P., & Olsbye, U. (2009). Shape-Selective Conversion of Methanol to Hydrocarbons Over 10-Ring Unidirectional-Channel Acidic H-ZSM-22. ChemCatChem, 1(1), 78-81. doi:10.1002/cctc.200900057 es_ES
dc.description.references Teketel, S., Skistad, W., Benard, S., Olsbye, U., Lillerud, K. P., Beato, P., & Svelle, S. (2011). Shape Selectivity in the Conversion of Methanol to Hydrocarbons: The Catalytic Performance of One-Dimensional 10-Ring Zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1. ACS Catalysis, 2(1), 26-37. doi:10.1021/cs200517u es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem