- -

Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Toldrá Vilardell, Fidel es_ES
dc.contributor.author Gallego-Ibáñez, Marta es_ES
dc.contributor.author Reig Riera, Mª Milagro es_ES
dc.contributor.author ARISTOY ALBERT, MARÍA CONCEPCIÓN es_ES
dc.contributor.author Mora Soler, Leticia es_ES
dc.date.accessioned 2021-04-29T03:31:33Z
dc.date.available 2021-04-29T03:31:33Z
dc.date.issued 2020-11-18 es_ES
dc.identifier.issn 0021-8561 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165756
dc.description "This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jafc.9b08297" es_ES
dc.description.abstract [EN] There is a wide variety of peptides released from food proteins that are able to exert a relevant benefit for human health, such as angiotensin-converting enzyme inhibition, antioxidant, anti-inflammatory, hypoglucemic, or antithrombotic activity, among others. This manuscript is reviewing the recent advances on enzymatic mechanisms for the hydrolysis of proteins from foods of animal origin, including the types of enzymes and mechanisms of action involved, the strategies followed for the isolation and identification of bioactive peptides through advanced proteomic tools, and the assessment of bioactivity and its beneficial effects. Specific applications in fermented and/or ripened foods where a significant number of bioactive peptides have been reported with relevant in vivo physiological effects on laboratory rats and humans as well as the hydrolysis of animal food proteins for the production of bioactive peptides are also reviewed. es_ES
dc.description.sponsorship The research leading to these results received funding from Grant GL2017-89381-R from the Spanish Ministry of Economy, Industry and Competitivity and FEDER funds. Ramon y Cajal postdoctoral contract to Leticia Mora is also acknowledged. Fidel Toldrá is grateful for the 2019 Award for Advancement of Application of Agricultural and Food Chemistry received from the Agricultural and Food Chemistry Division (AGFD) at the San Diego 258th ACS Conference meeting. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Journal of Agricultural and Food Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Proteolysis es_ES
dc.subject Bioactive peptides es_ES
dc.subject Proteomics es_ES
dc.subject Mass spectrometry es_ES
dc.subject Enzyme hydrolysis es_ES
dc.subject Peptidases es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1021/acs.jafc.9b08297 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-89381-R/ES/SABOR DEL JAMON CURADO: GENERACION DE DI Y TRIPEPTIDOS DURANTE EL PROCESO, SU CONTRIBUCION AL SABOR Y POSIBLES EFECTOS DE SU OXIDACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Toldrá Vilardell, F.; Gallego-Ibáñez, M.; Reig Riera, MM.; Aristoy Albert, MC.; Mora Soler, L. (2020). Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. Journal of Agricultural and Food Chemistry. 68(46):12842-12855. https://doi.org/10.1021/acs.jafc.9b08297 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename American Chemical Society (ACS) Fall 2019 National Meeting & Exposition on Chemistry & Water es_ES
dc.relation.conferencedate Agosto 25-29,2019 es_ES
dc.relation.conferenceplace San Diego, USA es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.jafc.9b08297 es_ES
dc.description.upvformatpinicio 12842 es_ES
dc.description.upvformatpfin 12855 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 68 es_ES
dc.description.issue 46 es_ES
dc.identifier.pmid 32157886 es_ES
dc.relation.pasarela S\421965 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J., & Brandelli, A. (2014). Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48-55. doi:10.1016/j.peptides.2014.09.001 es_ES
dc.description.references Mohanty, D. P., Mohapatra, S., Misra, S., & Sahu, P. S. (2016). Milk derived bioactive peptides and their impact on human health – A review. Saudi Journal of Biological Sciences, 23(5), 577-583. doi:10.1016/j.sjbs.2015.06.005 es_ES
dc.description.references Mora, L., Escudero, E., Arihara, K., & Toldrá, F. (2015). Antihypertensive effect of peptides naturally generated during Iberian dry-cured ham processing. Food Research International, 78, 71-78. doi:10.1016/j.foodres.2015.11.005 es_ES
dc.description.references Santiago-López, L., Aguilar-Toalá, J. E., Hernández-Mendoza, A., Vallejo-Cordoba, B., Liceaga, A. M., & González-Córdova, A. F. (2018). Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. Journal of Dairy Science, 101(5), 3742-3757. doi:10.3168/jds.2017-13465 es_ES
dc.description.references Gallego, M., Mora, L., Escudero, E., & Toldrá, F. (2018). Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. International Journal of Food Microbiology, 276, 71-78. doi:10.1016/j.ijfoodmicro.2018.04.009 es_ES
dc.description.references Jensen, I.-J., & Mæhre, H. (2016). Preclinical and Clinical Studies on Antioxidative, Antihypertensive and Cardioprotective Effect of Marine Proteins and Peptides—A Review. Marine Drugs, 14(11), 211. doi:10.3390/md14110211 es_ES
dc.description.references Nongonierma, A. B., & FitzGerald, R. J. (2016). Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science & Technology, 50, 26-43. doi:10.1016/j.tifs.2016.01.022 es_ES
dc.description.references Schlienger, J.-L., Paillard, F., Lecerf, J.-M., Romon, M., Bonhomme, C., Schmitt, B., … Bresson, J.-L. (2014). Effect on blood lipids of two daily servings of Camembert cheese. An intervention trial in mildly hypercholesterolemic subjects. International Journal of Food Sciences and Nutrition, 65(8), 1013-1018. doi:10.3109/09637486.2014.945156 es_ES
dc.description.references Nilsen, R., Pripp, A. H., Høstmark, A. T., Haug, A., & Skeie, S. (2016). Effect of a cheese rich in angiotensin-converting enzyme-inhibiting peptides (Gamalost®) and a Gouda-type cheese on blood pressure: results of a randomised trial. Food & Nutrition Research, 60(1), 32017. doi:10.3402/fnr.v60.32017 es_ES
dc.description.references Montoro-García, S., Zafrilla-Rentero, M. P., Celdrán-de Haro, F. M., Piñero-de Armas, J. J., Toldrá, F., Tejada-Portero, L., & Abellán-Alemán, J. (2017). Effects of dry-cured ham rich in bioactive peptides on cardiovascular health: A randomized controlled trial. Journal of Functional Foods, 38, 160-167. doi:10.1016/j.jff.2017.09.012 es_ES
dc.description.references Martínez-Sánchez, S. M., Minguela, A., Prieto-Merino, D., Zafrilla-Rentero, M. P., Abellán-Alemán, J., & Montoro-García, S. (2017). The Effect of Regular Intake of Dry-Cured Ham Rich in Bioactive Peptides on Inflammation, Platelet and Monocyte Activation Markers in Humans. Nutrients, 9(4), 321. doi:10.3390/nu9040321 es_ES
dc.description.references Ryder, K., Bekhit, A. E.-D., McConnell, M., & Carne, A. (2016). Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases. Food Chemistry, 208, 42-50. doi:10.1016/j.foodchem.2016.03.121 es_ES
dc.description.references Toldrá, F., Reig, M., Aristoy, M.-C., & Mora, L. (2018). Generation of bioactive peptides during food processing. Food Chemistry, 267, 395-404. doi:10.1016/j.foodchem.2017.06.119 es_ES
dc.description.references Oseguera-Toledo, M. E., González de Mejía, E., Reynoso-Camacho, R., Cardador-Martínez, A., & Amaya-Llano, S. L. (2014). Proteins and bioactive peptides. Nutrafoods, 13(4), 147-157. doi:10.1007/s13749-014-0052-z es_ES
dc.description.references Lassoued, I., Mora, L., Nasri, R., Jridi, M., Toldrá, F., Aristoy, M.-C., … Nasri, M. (2015). Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. Journal of Functional Foods, 13, 225-238. doi:10.1016/j.jff.2014.12.042 es_ES
dc.description.references Abdelhedi, O., Jridi, M., Jemil, I., Mora, L., Toldrá, F., Aristoy, M.-C., … Nasri, R. (2016). Combined biocatalytic conversion of smooth hound viscera: Protein hydrolysates elaboration and assessment of their antioxidant, anti-ACE and antibacterial activities. Food Research International, 86, 9-23. doi:10.1016/j.foodres.2016.05.013 es_ES
dc.description.references Toldrá, F., Mora, L., & Reig, M. (2016). New insights into meat by-product utilization. Meat Science, 120, 54-59. doi:10.1016/j.meatsci.2016.04.021 es_ES
dc.description.references Tanzadehpanah, H., Asoodeh, A., & Chamani, J. (2012). An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Research International, 49(1), 105-111. doi:10.1016/j.foodres.2012.08.022 es_ES
dc.description.references Pepe, G., Sommella, E., Ventre, G., Scala, M. C., Adesso, S., Ostacolo, C., … Campiglia, P. (2016). Antioxidant peptides released from gastrointestinal digestion of «Stracchino» soft cheese: Characterization, in vitro intestinal protection and bioavailability. Journal of Functional Foods, 26, 494-505. doi:10.1016/j.jff.2016.08.021 es_ES
dc.description.references Kamdem, J. P., & Tsopmo, A. (2017). Reactivity of peptides within the food matrix. Journal of Food Biochemistry, 43(1), e12489. doi:10.1111/jfbc.12489 es_ES
dc.description.references Gallego, M., Mora, L., & Toldrá, F. (2018). Health relevance of antihypertensive peptides in foods. Current Opinion in Food Science, 19, 8-14. doi:10.1016/j.cofs.2017.12.004 es_ES
dc.description.references Mora, L., Gallego, M., Reig, M., & Toldrá, F. (2017). Challenges in the quantitation of naturally generated bioactive peptides in processed meats. Trends in Food Science & Technology, 69, 306-314. doi:10.1016/j.tifs.2017.04.011 es_ES
dc.description.references Sentandreu, M. Á., & Toldrá, F. (2006). Oligopeptides hydrolysed by muscle dipeptidyl peptidases can generate angiotensin-I converting enzyme inhibitory dipeptides. European Food Research and Technology, 224(6), 785-790. doi:10.1007/s00217-006-0367-0 es_ES
dc.description.references Mora, L., Escudero, E., Aristoy, M.-C., & Toldrá, F. (2015). A peptidomic approach to study the contribution of added casein proteins to the peptide profile in Spanish dry-fermented sausages. International Journal of Food Microbiology, 212, 41-48. doi:10.1016/j.ijfoodmicro.2015.05.022 es_ES
dc.description.references Mora, L., M, G., & F, T. (2019). Degradation of myosin heavy chain and its potential as a source of natural bioactive peptides in dry-cured ham. Food Bioscience, 30, 100416. doi:10.1016/j.fbio.2019.100416 es_ES
dc.description.references Mora, L., Fraser, P. D., & Toldrá, F. (2013). Proteolysis follow-up in dry-cured meat products through proteomic approaches. Food Research International, 54(1), 1292-1297. doi:10.1016/j.foodres.2012.09.042 es_ES
dc.description.references López, C. M., Bru, E., Vignolo, G. M., & Fadda, S. G. (2015). Identification of small peptides arising from hydrolysis of meat proteins in dry fermented sausages. Meat Science, 104, 20-29. doi:10.1016/j.meatsci.2015.01.013 es_ES
dc.description.references Gallego, M., Grootaert, C., Mora, L., Aristoy, M. C., Van Camp, J., & Toldrá, F. (2016). Transepithelial transport of dry-cured ham peptides with ACE inhibitory activity through a Caco-2 cell monolayer. Journal of Functional Foods, 21, 388-395. doi:10.1016/j.jff.2015.11.046 es_ES
dc.description.references Mora, L., Sentandreu, M. A., & Toldrá, F. (2011). Intense Degradation of Myosin Light Chain Isoforms in Spanish Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 59(8), 3884-3892. doi:10.1021/jf104070q es_ES
dc.description.references Mora, L., Gallego, M., Escudero, E., Reig, M., Aristoy, M.-C., & Toldrá, F. (2015). Small peptides hydrolysis in dry-cured meats. International Journal of Food Microbiology, 212, 9-15. doi:10.1016/j.ijfoodmicro.2015.04.018 es_ES
dc.description.references Toldrá, F., Aristoy, M.-C., & Flores, M. (2000). Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Research International, 33(3-4), 181-185. doi:10.1016/s0963-9969(00)00032-6 es_ES
dc.description.references Zhu, C.-Z., Zhang, W.-G., Zhou, G.-H., & Xu, X.-L. (2015). Identification of antioxidant peptides of Jinhua ham generated in the products and through the simulated gastrointestinal digestion system. Journal of the Science of Food and Agriculture, 96(1), 99-108. doi:10.1002/jsfa.7065 es_ES
dc.description.references Xing, L., Hu, Y., Hu, H., Ge, Q., Zhou, G., & Zhang, W. (2016). Purification and identification of antioxidative peptides from dry-cured Xuanwei ham. Food Chemistry, 194, 951-958. doi:10.1016/j.foodchem.2015.08.101 es_ES
dc.description.references Dellafiora, L., Paolella, S., Dall’Asta, C., Dossena, A., Cozzini, P., & Galaverna, G. (2015). Hybrid in Silico/in Vitro Approach for the Identification of Angiotensin I Converting Enzyme Inhibitory Peptides from Parma Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 63(28), 6366-6375. doi:10.1021/acs.jafc.5b02303 es_ES
dc.description.references Gallego, M., Mora, L., & Toldrá, F. (2018). Characterisation of the antioxidant peptide AEEEYPDL and its quantification in Spanish dry-cured ham. Food Chemistry, 258, 8-15. doi:10.1016/j.foodchem.2018.03.035 es_ES
dc.description.references Gallego, M., Mora, L., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2014). Degradation of LIM domain-binding protein three during processing of Spanish dry-cured ham. Food Chemistry, 149, 121-128. doi:10.1016/j.foodchem.2013.10.076 es_ES
dc.description.references Castellano, P., Mora, L., Escudero, E., Vignolo, G., Aznar, R., & Toldrá, F. (2016). Antilisterial peptides from Spanish dry-cured hams: Purification and identification. Food Microbiology, 59, 133-141. doi:10.1016/j.fm.2016.05.018 es_ES
dc.description.references Gallego, M., Mora, L., & Toldrá, F. (2019). Potential cardioprotective peptides generated in Spanish dry-cured ham. Journal of Food Bioactives, 6. doi:10.31665/jfb.2019.6188 es_ES
dc.description.references Gallego, M., Mora, L., Reig, M., & Toldrá, F. (2018). Stability of the potent antioxidant peptide SNAAC identified from Spanish dry-cured ham. Food Research International, 105, 873-879. doi:10.1016/j.foodres.2017.12.006 es_ES
dc.description.references Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.-C., Arihara, K., & Toldrá, F. (2013). Purification and Identification of antihypertensive peptides in Spanish dry-cured ham. Journal of Proteomics, 78, 499-507. doi:10.1016/j.jprot.2012.10.019 es_ES
dc.description.references Wang, J., Lu, S., Li, R., Wang, Y., & Huang, L. (2019). Identification and characterization of antioxidant peptides from Chinese dry‐cured mutton ham. Journal of the Science of Food and Agriculture, 100(3), 1246-1255. doi:10.1002/jsfa.10136 es_ES
dc.description.references Fialho, T. L., Carrijo, L. C., Magalhães Júnior, M. J., Baracat-Pereira, M. C., Piccoli, R. H., & de Abreu, L. R. (2018). Extraction and identification of antimicrobial peptides from the Canastra artisanal minas cheese. Food Research International, 107, 406-413. doi:10.1016/j.foodres.2018.02.009 es_ES
dc.description.references Timón, M. L., Andrés, A. I., Otte, J., & Petrón, M. J. (2019). Antioxidant peptides (<3 kDa) identified on hard cow milk cheese with rennet from different origin. Food Research International, 120, 643-649. doi:10.1016/j.foodres.2018.11.019 es_ES
dc.description.references Baptista, D. P., Galli, B. D., Cavalheiro, F. G., Negrão, F., Eberlin, M. N., & Gigante, M. L. (2018). Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. International Dairy Journal, 87, 75-83. doi:10.1016/j.idairyj.2018.08.001 es_ES
dc.description.references Jin, Y., Yu, Y., Qi, Y., Wang, F., Yan, J., & Zou, H. (2016). Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion. Journal of Proteomics, 141, 24-46. doi:10.1016/j.jprot.2016.04.010 es_ES
dc.description.references Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Antibacterial and antiproliferative peptides in synbiotic yogurt—Release and stability during refrigerated storage. Journal of Dairy Science, 99(6), 4233-4242. doi:10.3168/jds.2015-10499 es_ES
dc.description.references Fekete, Á., Givens, D., & Lovegrove, J. (2015). Casein-Derived Lactotripeptides Reduce Systolic and Diastolic Blood Pressure in a Meta-Analysis of Randomised Clinical Trials. Nutrients, 7(1), 659-681. doi:10.3390/nu7010659 es_ES
dc.description.references Chakrabarti, S., & Wu, J. (2015). Milk-Derived Tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) Promote Adipocyte Differentiation and Inhibit Inflammation in 3T3-F442A Cells. PLOS ONE, 10(2), e0117492. doi:10.1371/journal.pone.0117492 es_ES
dc.description.references Chakrabarti, S., Jahandideh, F., Davidge, S. T., & Wu, J. (2018). Milk-Derived Tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) Enhance Insulin Sensitivity and Prevent Insulin Resistance in 3T3-F442A Preadipocytes. Journal of Agricultural and Food Chemistry, 66(39), 10179-10187. doi:10.1021/acs.jafc.8b02051 es_ES
dc.description.references Li, Y., Sadiq, F. A., Liu, T., Chen, J., & He, G. (2015). Purification and identification of novel peptides with inhibitory effect against angiotensin I-converting enzyme and optimization of process conditions in milk fermented with the yeast Kluyveromyces marxianus. Journal of Functional Foods, 16, 278-288. doi:10.1016/j.jff.2015.04.043 es_ES
dc.description.references Elkhtab, E., El-Alfy, M., Shenana, M., Mohamed, A., & Yousef, A. E. (2017). New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures. Journal of Dairy Science, 100(12), 9508-9520. doi:10.3168/jds.2017-13150 es_ES
dc.description.references Najafian, L., & Babji, A. S. (2018). Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). Journal of Food Measurement and Characterization, 12(3), 2174-2183. doi:10.1007/s11694-018-9833-1 es_ES
dc.description.references Kleekayai, T., Saetae, D., Wattanachaiyingyong, O., Tachibana, S., Yasuda, M., & Suntornsuk, W. (2014). Characterization and in vitro biological activities of Thai traditional fermented shrimp pastes. Journal of Food Science and Technology, 52(3), 1839-1848. doi:10.1007/s13197-014-1528-y es_ES
dc.description.references Gallego, M., Aristoy, M.-C., & Toldrá, F. (2014). Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham. Meat Science, 96(2), 757-761. doi:10.1016/j.meatsci.2013.09.014 es_ES
dc.description.references Flores, M., & Toldrá, F. (2011). Microbial enzymatic activities for improved fermented meats. Trends in Food Science & Technology, 22(2-3), 81-90. doi:10.1016/j.tifs.2010.09.007 es_ES
dc.description.references Martinez-Villaluenga, C., Peñas, E., & Frias, J. (2017). Bioactive Peptides in Fermented Foods. Fermented Foods in Health and Disease Prevention, 23-47. doi:10.1016/b978-0-12-802309-9.00002-9 es_ES
dc.description.references Santos, N. (2001). Hydrolysis of pork muscle sarcoplasmic proteins by Debaryomyces hansenii. International Journal of Food Microbiology, 68(3), 199-206. doi:10.1016/s0168-1605(01)00489-5 es_ES
dc.description.references Matsushita-Morita, M., Tada, S., Suzuki, S., Hattori, R., Marui, J., Furukawa, I., … Kusumoto, K.-I. (2010). Overexpression and Characterization of an Extracellular Leucine Aminopeptidase from Aspergillus oryzae. Current Microbiology, 62(2), 557-564. doi:10.1007/s00284-010-9744-9 es_ES
dc.description.references Stressler, T., Ewert, J., Merz, M., Funk, J., Claaßen, W., Lutz-Wahl, S., … Fischer, L. (2016). A Novel Glutamyl (Aspartyl)-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application. PLOS ONE, 11(3), e0152139. doi:10.1371/journal.pone.0152139 es_ES
dc.description.references ZOTTA, T., RICCIARDI, A., & PARENTE, E. (2007). Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdoughs. International Journal of Food Microbiology, 115(2), 165-172. doi:10.1016/j.ijfoodmicro.2006.10.026 es_ES
dc.description.references Herreros, M. ., Fresno, J. ., González Prieto, M. ., & Tornadijo, M. . (2003). Technological characterization of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). International Dairy Journal, 13(6), 469-479. doi:10.1016/s0958-6946(03)00054-2 es_ES
dc.description.references Bintsis, T., Vafopoulou-Mastrojiannaki, A., Litopoulou-Tzanetaki, E., & Robinson, R. K. (2003). Protease, peptidase and esterase activities by lactobacilli and yeast isolates from Feta cheese brine. Journal of Applied Microbiology, 95(1), 68-77. doi:10.1046/j.1365-2672.2003.01980.x es_ES
dc.description.references Macedo, A. C., Vieira, M., Poças, R., & Malcata, F. X. (2000). Peptide hydrolase system of lactic acid bacteria isolated from Serra da Estrela cheese. International Dairy Journal, 10(11), 769-774. doi:10.1016/s0958-6946(00)00111-4 es_ES
dc.description.references González, L., Sacristán, N., Arenas, R., Fresno, J. M., & Eugenia Tornadijo, M. (2010). Enzymatic activity of lactic acid bacteria (with antimicrobial properties) isolated from a traditional Spanish cheese. Food Microbiology, 27(5), 592-597. doi:10.1016/j.fm.2010.01.004 es_ES
dc.description.references TOLDRÁ, F., CERVERÓ, M.-C., & PART, C. (1993). Porcine Aminopeptidase Activity as Affected by Curing Agents. Journal of Food Science, 58(4), 724-726. doi:10.1111/j.1365-2621.1993.tb09344.x es_ES
dc.description.references Stressler, T., Eisele, T., Schlayer, M., Lutz-Wahl, S., & Fischer, L. (2013). Characterization of the Recombinant Exopeptidases PepX and PepN from Lactobacillus helveticus ATCC 12046 Important for Food Protein Hydrolysis. PLoS ONE, 8(7), e70055. doi:10.1371/journal.pone.0070055 es_ES
dc.description.references Rul, F., Gripon, J.-C., & Monnet, V. (1995). St-PepA, a Streptococcus thermophilus aminopeptidase with high specificity for acidic residues. Microbiology, 141(9), 2281-2287. doi:10.1099/13500872-141-9-2281 es_ES
dc.description.references Chapot-Chartier, M.-P., Rul, F., Nardi, M., & Gripon, J.-C. (1994). Gene Cloning and Characterization of PepC, a Cysteine Aminopeptidase from Streptococcus thermophilus, with sequence Similarity to the Eucaryotic Bleomycin Hydrolase. European Journal of Biochemistry, 224(2), 497-506. doi:10.1111/j.1432-1033.1994.00497.x es_ES
dc.description.references Stressler, T., Eisele, T., Schlayer, M., & Fischer, L. (2012). Production, active staining and gas chromatography assay analysis of recombinant aminopeptidase P from Lactococcus lactis ssp. lactis DSM 20481. AMB Express, 2(1). doi:10.1186/2191-0855-2-39 es_ES
dc.description.references Stressler, T., Eisele, T., Kranz, B., & Fischer, L. (2014). PepX from Lactobacillus helveticus: Automated multi-step purification and determination of kinetic parameters with original tripeptide substrates. Journal of Molecular Catalysis B: Enzymatic, 108, 103-110. doi:10.1016/j.molcatb.2014.07.006 es_ES
dc.description.references Sinz, Q., & Schwab, W. (2012). Metabolism of amino acids, dipeptides and tetrapeptides by Lactobacillus sakei. Food Microbiology, 29(2), 215-223. doi:10.1016/j.fm.2011.07.007 es_ES
dc.description.references Chavagnat, F., Meyer, J., & Casey, M. G. (2000). Purification, characterisation, cloning and sequencing of the gene encoding oligopeptidase PepO fromStreptococcus thermophilusA. FEMS Microbiology Letters, 191(1), 79-85. doi:10.1111/j.1574-6968.2000.tb09322.x es_ES
dc.description.references Rodríguez-Serrano, G. M., Garcia-Garibay, J. M., Cruz-Guerrero, A. E., Gomez-Ruiz, L. del C., Ayala-Nino, A., Castaneda-Ovando, A., & Gonzalez-Olivares, L. G. (2018). Proteolytic System of Streptococcus thermophilus. Journal of Microbiology and Biotechnology, 28(10), 1581-1588. doi:10.4014/jmb.1807.07017 es_ES
dc.description.references Juille, O., Bars, D. L., & Juillard, V. (2005). The specificity of oligopeptide transport by Streptococcus thermophilus resembles that of Lactococcus lactis and not that of pathogenic streptococci. Microbiology, 151(6), 1987-1994. doi:10.1099/mic.0.27730-0 es_ES
dc.description.references Skrzypczak, K., Gustaw, W., Szwajgier, D., Fornal, E., & Waśko, A. (2017). κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. Journal of Food Science and Technology, 54(11), 3679-3688. doi:10.1007/s13197-017-2830-2 es_ES
dc.description.references Chang, O. K., Roux, É., Awussi, A. A., Miclo, L., Jardin, J., Jameh, N., … Perrin, C. (2014). Use of a free form of the Streptococcus thermophilus cell envelope protease PrtS as a tool to produce bioactive peptides. International Dairy Journal, 38(2), 104-115. doi:10.1016/j.idairyj.2014.01.008 es_ES
dc.description.references Ha, G. E., Chang, O. K., Jo, S.-M., Han, G.-S., Park, B.-Y., Ham, J.-S., & Jeong, S.-G. (2015). Identification of Antihypertensive Peptides Derived from Low Molecular Weight Casein Hydrolysates Generated during Fermentation by Bifidobacterium longum KACC 91563. Korean Journal for Food Science of Animal Resources, 35(6), 738-747. doi:10.5851/kosfa.2015.35.6.738 es_ES
dc.description.references Pescuma, M., Espeche Turbay, M. B., Mozzi, F., Font de Valdez, G., Savoy de Giori, G., & Hebert, E. M. (2013). Diversity in proteinase specificity of thermophilic lactobacilli as revealed by hydrolysis of dairy and vegetable proteins. Applied Microbiology and Biotechnology, 97(17), 7831-7844. doi:10.1007/s00253-013-5037-0 es_ES
dc.description.references Ali, E., Nielsen, S. D., Abd-El Aal, S., El-Leboudy, A., Saleh, E., & LaPointe, G. (2019). Use of Mass Spectrometry to Profile Peptides in Whey Protein Isolate Medium Fermented by Lactobacillus helveticus LH-2 and Lactobacillus acidophilus La-5. Frontiers in Nutrition, 6. doi:10.3389/fnut.2019.00152 es_ES
dc.description.references Mauriello, G., Casaburi, A., Blaiotta, G., & Villani, F. (2004). Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Science, 67(1), 149-158. doi:10.1016/j.meatsci.2003.10.003 es_ES
dc.description.references Chaves-López, C., Serio, A., Paparella, A., Martuscelli, M., Corsetti, A., Tofalo, R., & Suzzi, G. (2014). Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food Microbiology, 42, 117-121. doi:10.1016/j.fm.2014.03.005 es_ES
dc.description.references Dos Santos Aguilar, J. G., & Sato, H. H. (2018). Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International, 103, 253-262. doi:10.1016/j.foodres.2017.10.044 es_ES
dc.description.references Merz, M., Eisele, T., Berends, P., Appel, D., Rabe, S., Blank, I., … Fischer, L. (2015). Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes. Journal of Agricultural and Food Chemistry, 63(23), 5682-5693. doi:10.1021/acs.jafc.5b01665 es_ES
dc.description.references Kitchener, R. L., & Grunden, A. M. (2012). Prolidase function in proline metabolism and its medical and biotechnological applications. Journal of Applied Microbiology, 113(2), 233-247. doi:10.1111/j.1365-2672.2012.05310.x es_ES
dc.description.references Harnedy, P. A., O’Keeffe, M. B., & FitzGerald, R. J. (2017). Fractionation and identification of antioxidant peptides from an enzymatically hydrolysed Palmaria palmata protein isolate. Food Research International, 100, 416-422. doi:10.1016/j.foodres.2017.07.037 es_ES
dc.description.references Admassu, H., Gasmalla, M. A. A., Yang, R., & Zhao, W. (2018). Identification of Bioactive Peptides with α-Amylase Inhibitory Potential from Enzymatic Protein Hydrolysates of Red Seaweed (Porphyra spp). Journal of Agricultural and Food Chemistry, 66(19), 4872-4882. doi:10.1021/acs.jafc.8b00960 es_ES
dc.description.references Neves, A. C., Harnedy, P. A., O’Keeffe, M. B., & FitzGerald, R. J. (2017). Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chemistry, 218, 396-405. doi:10.1016/j.foodchem.2016.09.053 es_ES
dc.description.references Balti, R., Bougatef, A., Sila, A., Guillochon, D., Dhulster, P., & Nedjar-Arroume, N. (2015). Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chemistry, 170, 519-525. doi:10.1016/j.foodchem.2013.03.091 es_ES
dc.description.references Salampessy, J., Reddy, N., Phillips, M., & Kailasapathy, K. (2017). Isolation and characterization of nutraceutically potential ACE-Inhibitory peptides from leatherjacket (Meuchenia sp.) protein hydrolysates. LWT, 80, 430-436. doi:10.1016/j.lwt.2017.03.004 es_ES
dc.description.references Jemil, I., Mora, L., Nasri, R., Abdelhedi, O., Aristoy, M.-C., Hajji, M., … Toldrá, F. (2016). A peptidomic approach for the identification of antioxidant and ACE-inhibitory peptides in sardinelle protein hydrolysates fermented by Bacillus subtilis A26 and Bacillus amyloliquefaciens An6. Food Research International, 89, 347-358. doi:10.1016/j.foodres.2016.08.020 es_ES
dc.description.references Yu, W., Field, C. J., & Wu, J. (2018). Purification and identification of anti-inflammatory peptides from spent hen muscle proteins hydrolysate. Food Chemistry, 253, 101-107. doi:10.1016/j.foodchem.2018.01.093 es_ES
dc.description.references Wang, L.-S., Huang, J.-C., Chen, Y.-L., Huang, M., & Zhou, G.-H. (2015). Identification and Characterization of Antioxidant Peptides from Enzymatic Hydrolysates of Duck Meat. Journal of Agricultural and Food Chemistry, 63(13), 3437-3444. doi:10.1021/jf506120w es_ES
dc.description.references Mirdhayati, I., Hermanianto, J., Wijaya, C. H., Sajuthi, D., & Arihara, K. (2016). Angiotensin converting enzyme (ACE) inhibitory and antihypertensive activities of protein hydrolysate from meat of Kacang goat (Capra aegagrus hircus ). Journal of the Science of Food and Agriculture, 96(10), 3536-3542. doi:10.1002/jsfa.7538 es_ES
dc.description.references Choe, J., Seol, K.-H., Son, D.-I., Lee, H. J., Lee, M., & Jo, C. (2019). Identification of angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of pork loin. International Journal of Food Properties, 22(1), 1112-1121. doi:10.1080/10942912.2019.1629690 es_ES
dc.description.references Zhang, Y., Chen, R., Ma, H., & Chen, S. (2015). Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-Treated Goat Milk Casein Hydrolysates by 2D-TLC and LC–MS/MS. Journal of Agricultural and Food Chemistry, 63(40), 8819-8828. doi:10.1021/acs.jafc.5b03062 es_ES
dc.description.references Bezerra, T. K. A., de Lacerda, J. T. J. G., Salu, B. R., Oliva, M. L. V., Juliano, M. A., Pacheco, M. T. B., & Madruga, M. S. (2019). Identification of Angiotensin I-Converting Enzyme-Inhibitory and Anticoagulant Peptides from Enzymatic Hydrolysates of Chicken Combs and Wattles. Journal of Medicinal Food, 22(12), 1294-1300. doi:10.1089/jmf.2019.0066 es_ES
dc.description.references Slizyte, R., Rommi, K., Mozuraityte, R., Eck, P., Five, K., & Rustad, T. (2016). Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnology Reports, 11, 99-109. doi:10.1016/j.btre.2016.08.003 es_ES
dc.description.references Mora, L., Gallego, M., & Toldrá, F. (2018). ACEI-Inhibitory Peptides Naturally Generated in Meat and Meat Products and Their Health Relevance. Nutrients, 10(9), 1259. doi:10.3390/nu10091259 es_ES
dc.description.references Mora, L., Gallego, M., & Toldrá, F. (2018). New approaches based on comparative proteomics for the assessment of food quality. Current Opinion in Food Science, 22, 22-27. doi:10.1016/j.cofs.2018.01.005 es_ES
dc.description.references Iwaniak, A., Darewicz, M., Mogut, D., & Minkiewicz, P. (2019). Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. Journal of Functional Foods, 61, 103486. doi:10.1016/j.jff.2019.103486 es_ES
dc.description.references Zhang, Y., Aryee, A. N., & Simpson, B. K. (2020). Current role of in silico approaches for food enzymes. Current Opinion in Food Science, 31, 63-70. doi:10.1016/j.cofs.2019.11.003 es_ES
dc.description.references Şanlier, N., Gökcen, B. B., & Sezgin, A. C. (2017). Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition, 59(3), 506-527. doi:10.1080/10408398.2017.1383355 es_ES
dc.description.references Vermeirssen, V., Augustijns, P., Morel, N., Van Camp, J., Opsomer, A., & Verstraete, W. (2005). In vitrointestinal transport and antihypertensive activity of ACE inhibitory pea and whey digests. International Journal of Food Sciences and Nutrition, 56(6), 415-430. doi:10.1080/09637480500407461 es_ES
dc.description.references Tu, M., Cheng, S., Lu, W., & Du, M. (2018). Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry, 105, 7-17. doi:10.1016/j.trac.2018.04.005 es_ES
dc.description.references Girgih, A. T., He, R., Malomo, S., Offengenden, M., Wu, J., & Aluko, R. E. (2014). Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 6, 384-394. doi:10.1016/j.jff.2013.11.005 es_ES
dc.description.references Hernández-Ledesma, B., del Mar Contreras, M., & Recio, I. (2011). Antihypertensive peptides: Production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science, 165(1), 23-35. doi:10.1016/j.cis.2010.11.001 es_ES
dc.description.references Samaranayaka, A. G. P., & Li-Chan, E. C. Y. (2011). Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods, 3(4), 229-254. doi:10.1016/j.jff.2011.05.006 es_ES
dc.description.references Zou, T.-B., He, T.-P., Li, H.-B., Tang, H.-W., & Xia, E.-Q. (2016). The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules, 21(1), 72. doi:10.3390/molecules21010072 es_ES
dc.description.references Nwachukwu, I. D., & Aluko, R. E. (2019). Structural and functional properties of food protein-derived antioxidant peptides. Journal of Food Biochemistry, 43(1), e12761. doi:10.1111/jfbc.12761 es_ES
dc.description.references Lorenzo, J. M., Munekata, P. E. S., Gómez, B., Barba, F. J., Mora, L., Pérez-Santaescolástica, C., & Toldrá, F. (2018). Bioactive peptides as natural antioxidants in food products – A review. Trends in Food Science & Technology, 79, 136-147. doi:10.1016/j.tifs.2018.07.003 es_ES
dc.description.references Ghribi, A. M., Sila, A., Przybylski, R., Nedjar-Arroume, N., Makhlouf, I., Blecker, C., … Besbes, S. (2015). Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. Journal of Functional Foods, 12, 516-525. doi:10.1016/j.jff.2014.12.011 es_ES
dc.description.references Park, E. Y., Nakamura, Y., Sato, K., & Matsumura, Y. (2011). Effects of Amino Acids and Peptide on Lipid Oxidation in Emulsion Systems. Journal of the American Oil Chemists’ Society, 89(3), 477-484. doi:10.1007/s11746-011-1940-7 es_ES
dc.description.references Manhiani, P. S., Northcutt, J. K., Han, I., Bridges, W. C., & Dawson, P. L. (2013). Antioxidant activity of carnosine extracted from various poultry tissues. Poultry Science, 92(2), 444-453. doi:10.3382/ps.2012-02480 es_ES
dc.description.references Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2013). Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 138(2-3), 1282-1288. doi:10.1016/j.foodchem.2012.10.133 es_ES
dc.description.references Kumar, M. S. (2019). Peptides and Peptidomimetics as Potential Antiobesity Agents: Overview of Current Status. Frontiers in Nutrition, 6. doi:10.3389/fnut.2019.00011 es_ES
dc.description.references Yan, J., Zhao, J., Yang, R., & Zhao, W. (2019). Bioactive peptides with antidiabetic properties: a review. International Journal of Food Science & Technology, 54(6), 1909-1919. doi:10.1111/ijfs.14090 es_ES
dc.description.references Mora, L., González-Rogel, D., Heres, A., & Toldrá, F. (2020). Iberian dry-cured ham as a potential source of α-glucosidase-inhibitory peptides. Journal of Functional Foods, 67, 103840. doi:10.1016/j.jff.2020.103840 es_ES
dc.description.references Mudgil, P., Kamal, H., Yuen, G. C., & Maqsood, S. (2018). Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chemistry, 259, 46-54. doi:10.1016/j.foodchem.2018.03.082 es_ES
dc.description.references Ayoub, M. A., Palakkott, A. R., Ashraf, A., & Iratni, R. (2018). The molecular basis of the anti-diabetic properties of camel milk. Diabetes Research and Clinical Practice, 146, 305-312. doi:10.1016/j.diabres.2018.11.006 es_ES
dc.description.references Siow, H.-L., & Gan, C.-Y. (2016). Extraction, identification, and structure–activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). Journal of Functional Foods, 22, 1-12. doi:10.1016/j.jff.2016.01.011 es_ES
dc.description.references Tabas, I., & Glass, C. K. (2013). Anti-Inflammatory Therapy in Chronic Disease: Challenges and Opportunities. Science, 339(6116), 166-172. doi:10.1126/science.1230720 es_ES
dc.description.references Chakrabarti, S., Jahandideh, F., & Wu, J. (2014). Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress. BioMed Research International, 2014, 1-11. doi:10.1155/2014/608979 es_ES
dc.description.references Fernández-Tomé, S., Hernández-Ledesma, B., Chaparro, M., Indiano-Romacho, P., Bernardo, D., & Gisbert, J. P. (2019). Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends in Food Science & Technology, 88, 194-206. doi:10.1016/j.tifs.2019.03.017 es_ES
dc.description.references Mudgil, P., Baby, B., Ngoh, Y.-Y., Kamal, H., Vijayan, R., Gan, C.-Y., & Maqsood, S. (2019). Molecular binding mechanism and identification of novel anti-hypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates. LWT, 112, 108193. doi:10.1016/j.lwt.2019.05.091 es_ES
dc.description.references Khatun, M. S., Hasan, M. M., & Kurata, H. (2019). PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features. Frontiers in Genetics, 10. doi:10.3389/fgene.2019.00129 es_ES
dc.description.references Guha, S., & Majumder, K. (2018). Structural-features of food-derived bioactive peptides with anti-inflammatory activity: A brief review. Journal of Food Biochemistry, 43(1), e12531. doi:10.1111/jfbc.12531 es_ES
dc.description.references Gupta, S., Sharma, A. K., Shastri, V., Madhu, M. K., & Sharma, V. K. (2017). Prediction of anti-inflammatory proteins/peptides: an insilico approach. Journal of Translational Medicine, 15(1). doi:10.1186/s12967-016-1103-6 es_ES
dc.description.references Dashper, S. G., Liu, S. W., & Reynolds, E. C. (2007). Antimicrobial Peptides and their Potential as Oral Therapeutic Agents. International Journal of Peptide Research and Therapeutics, 13(4), 505-516. doi:10.1007/s10989-007-9094-z es_ES
dc.description.references Corrêa, J. A. F., Evangelista, A. G., Nazareth, T. de M., & Luciano, F. B. (2019). Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia, 8, 100494. doi:10.1016/j.mtla.2019.100494 es_ES
dc.description.references Agyei, D., & Danquah, M. K. (2012). Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends in Food Science & Technology, 23(2), 62-69. doi:10.1016/j.tifs.2011.08.010 es_ES
dc.description.references Kang, H., Seo, C., & Park, Y. (2015). Marine Peptides and Their Anti-Infective Activities. Marine Drugs, 13(1), 618-654. doi:10.3390/md13010618 es_ES
dc.description.references Cheung, R., Ng, T., & Wong, J. (2015). Marine Peptides: Bioactivities and Applications. Marine Drugs, 13(7), 4006-4043. doi:10.3390/md13074006 es_ES
dc.description.references Zanutto-Elgui, M. R., Vieira, J. C. S., Prado, D. Z. do, Buzalaf, M. A. R., Padilha, P. de M., Elgui de Oliveira, D., & Fleuri, L. F. (2019). Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chemistry, 278, 823-831. doi:10.1016/j.foodchem.2018.11.119 es_ES
dc.description.references Muhialdin, B. J., & Algboory, H. L. (2018). Identification of low molecular weight antimicrobial peptides from Iraqi camel milk fermented with Lactobacillus plantarum. PharmaNutrition, 6(2), 69-73. doi:10.1016/j.phanu.2018.02.002 es_ES
dc.description.references BENKERROUM, N. (2010). Antimicrobial peptides generated from milk proteins: a survey and prospects for application in the food industry. A review. International Journal of Dairy Technology, 63(3), 320-338. doi:10.1111/j.1471-0307.2010.00584.x es_ES
dc.description.references Borrajo, P., Pateiro, M., Barba, F. J., Mora, L., Franco, D., Toldrá, F., & Lorenzo, J. M. (2019). Antioxidant and Antimicrobial Activity of Peptides Extracted from Meat By-products: a Review. Food Analytical Methods, 12(11), 2401-2415. doi:10.1007/s12161-019-01595-4 es_ES
dc.description.references Lee, J. H., & Paik, H.-D. (2019). Anticancer and immunomodulatory activity of egg proteins and peptides: a review. Poultry Science, 98(12), 6505-6516. doi:10.3382/ps/pez381 es_ES
dc.description.references Mine, Y., Ma, F., & Lauriau, S. (2004). Antimicrobial Peptides Released by Enzymatic Hydrolysis of Hen Egg White Lysozyme. Journal of Agricultural and Food Chemistry, 52(5), 1088-1094. doi:10.1021/jf0345752 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem