- -

Ranolazine-mediated attenuation of mechanoelectric feedback in atrial myocyte monolayers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ranolazine-mediated attenuation of mechanoelectric feedback in atrial myocyte monolayers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Del-Canto, Irene es_ES
dc.contributor.author Gómez-Cid, Lidia es_ES
dc.contributor.author Hernández-Romero, Ismael es_ES
dc.contributor.author Guillem Sánchez, María Salud es_ES
dc.contributor.author Fernández-Santos, María Eugenia es_ES
dc.contributor.author Atienza, Felipe es_ES
dc.contributor.author Such, Luis es_ES
dc.contributor.author Fernández-Avilés, Francisco es_ES
dc.contributor.author Chorro, Francisco J. es_ES
dc.contributor.author Martínez Climent, Batiste Andreu es_ES
dc.date.accessioned 2021-05-07T03:30:55Z
dc.date.available 2021-05-07T03:30:55Z
dc.date.issued 2020-08-04 es_ES
dc.identifier.issn 1664-042X es_ES
dc.identifier.uri http://hdl.handle.net/10251/166054
dc.description.abstract [EN] Background Mechanical stretch increases Na(+)inflow into myocytes, related to mechanisms including stretch-activated channels or Na+/H(+)exchanger activation, involving Ca(2+)increase that leads to changes in electrophysiological properties favoring arrhythmia induction. Ranolazine is an antianginal drug with confirmed beneficial effects against cardiac arrhythmias associated with the augmentation ofI(NaL)current and Ca(2+)overload. Objective This study investigates the effects of mechanical stretch on activation patterns in atrial cell monolayers and its pharmacological response to ranolazine. Methods Confluent HL-1 cells were cultured in silicone membrane plates and were stretched to 110% of original length. The characteristics ofin vitrofibrillation (dominant frequency, regularity index, density of phase singularities, rotor meandering, and rotor curvature) were analyzed using optical mapping in order to study the mechanoelectric response to stretch under control conditions and ranolazine action. Results HL-1 cell stretch increased fibrillatory dominant frequency (3.65 +/- 0.69 vs. 4.35 +/- 0.74 Hz,p< 0.01) and activation complexity (1.97 +/- 0.45 vs. 2.66 +/- 0.58 PS/cm(2),p< 0.01) under control conditions. These effects were related to stretch-induced changes affecting the reentrant patterns, comprising a decrease in rotor meandering (0.72 +/- 0.12 vs. 0.62 +/- 0.12 cm/s,p< 0.001) and an increase in wavefront curvature (4.90 +/- 0.42 vs. 5.68 +/- 0.40 rad/cm,p< 0.001). Ranolazine reduced stretch-induced effects, attenuating the activation rate increment (12.8% vs. 19.7%,p< 0.01) and maintaining activation complexity-both parameters being lower during stretch than under control conditions. Moreover, under baseline conditions, ranolazine slowed and regularized the activation patterns (3.04 +/- 0.61 vs. 3.65 +/- 0.69 Hz,p< 0.01). Conclusion Ranolazine attenuates the modifications of activation patterns induced by mechanical stretch in atrial myocyte monolayers. es_ES
dc.description.sponsorship This work was supported by the Instituto de Salud Carlos III-FEDER (Fondo Europeo de Desarrollo Regional) (Grant Nos. CB16/11/00486, CB16/11/00292, PI16/01123, PI17/01059, PI17/01106, PI18/01620, and DTS16/0160) and the Generalitat Valenciana (Grant Nos. PROMETEO/2018/078 and APOSTD/2018/181). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Physiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mechanical stretch es_ES
dc.subject Mechanoelectric feedback es_ES
dc.subject Fibrillatory patterns es_ES
dc.subject Ranolazine es_ES
dc.subject Optical mapping es_ES
dc.subject Rotor dynamic analysis es_ES
dc.subject HL-1 cell es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Ranolazine-mediated attenuation of mechanoelectric feedback in atrial myocyte monolayers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphys.2020.00922 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F078/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI16%2F01123/ES/Regeneración Cardiaca de Infarto Crónico Porcino mediante Inyecciónes Intramiocardiacas de Células Progenitoras Embebidas en Hidrogeles de Matriz Decelularizada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI17%2F01059/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/STRATIFY-AF/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//DTS16%2F0160/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//CIBERCV16%2F11%2F00486/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CB16%2F11%2F00292/ES/ENFERMEDADES CARDIOVASCULARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI17%2F01106/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI18%2F01620/ES/Modificación de los efectos pro-arrítmicos inducidos por la sobrecarga mecánica o el remodelado ventricular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F181/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Del-Canto, I.; Gómez-Cid, L.; Hernández-Romero, I.; Guillem Sánchez, MS.; Fernández-Santos, ME.; Atienza, F.; Such, L.... (2020). Ranolazine-mediated attenuation of mechanoelectric feedback in atrial myocyte monolayers. Frontiers in Physiology. 11:1-13. https://doi.org/10.3389/fphys.2020.00922 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphys.2020.00922 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.pmid 32848863 es_ES
dc.identifier.pmcid PMC7417656 es_ES
dc.relation.pasarela S\418604 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Agladze, N. N., Halaidych, O. V., Tsvelaya, V. A., Bruegmann, T., Kilgus, C., Sasse, P., & Agladze, K. I. (2017). Synchronization of excitable cardiac cultures of different origin. Biomaterials Science, 5(9), 1777-1785. doi:10.1039/c7bm00171a es_ES
dc.description.references Antzelevitch, C., Burashnikov, A., Sicouri, S., & Belardinelli, L. (2011). Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm, 8(8), 1281-1290. doi:10.1016/j.hrthm.2011.03.045 es_ES
dc.description.references Belardinelli, L., Giles, W. R., Rajamani, S., Karagueuzian, H. S., & Shryock, J. C. (2015). Cardiac late Na+ current: Proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm, 12(2), 440-448. doi:10.1016/j.hrthm.2014.11.009 es_ES
dc.description.references BERENFELD, O., MANDAPATI, R., DIXIT, S., SKANES, A. C., CHEN, J., MANSOUR, M., & JALIFE, J. (2000). Spatially Distributed Dominant Excitation Frequencies Reveal Hidden Organization in Atrial Fibrillation in the Langendorff-Perfused Sheep Heart. Journal of Cardiovascular Electrophysiology, 11(8), 869-879. doi:10.1111/j.1540-8167.2000.tb00066.x es_ES
dc.description.references Beyder, A., Strege, P. R., Reyes, S., Bernard, C. E., Terzic, A., Makielski, J., … Farrugia, G. (2012). Ranolazine Decreases Mechanosensitivity of the Voltage-Gated Sodium Ion Channel Na V 1.5. Circulation, 125(22), 2698-2706. doi:10.1161/circulationaha.112.094714 es_ES
dc.description.references Bray, M.-A., & Wikswo, J. P. (2002). Considerations in phase plane analysis for nonstationary reentrant cardiac behavior. Physical Review E, 65(5). doi:10.1103/physreve.65.051902 es_ES
dc.description.references Caves, R. E., Cheng, H., Choisy, S. C., Gadeberg, H. C., Bryant, S. M., Hancox, J. C., & James, A. F. (2017). Atrial-ventricular differences in rabbit cardiac voltage-gated Na + currents: Basis for atrial-selective block by ranolazine. Heart Rhythm, 14(11), 1657-1664. doi:10.1016/j.hrthm.2017.06.012 es_ES
dc.description.references Chorro, F. J., del Canto, I., Brines, L., Such-Miquel, L., Calvo, C., Soler, C., … Such, L. (2015). Ranolazine Attenuates the Electrophysiological Effects of Myocardial Stretch in Langendorff-Perfused Rabbit Hearts. Cardiovascular Drugs and Therapy, 29(3), 231-241. doi:10.1007/s10557-015-6587-4 es_ES
dc.description.references Claycomb, W. C., Lanson, N. A., Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., Bahinski, A., & Izzo, N. J. (1998). HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences, 95(6), 2979-2984. doi:10.1073/pnas.95.6.2979 es_ES
dc.description.references Climent, A. M., Guillem, M. S., Fuentes, L., Lee, P., Bollensdorff, C., Fernández-Santos, M. E., … Fernández-Avilés, F. (2015). Role of atrial tissue remodeling on rotor dynamics: an in vitro study. American Journal of Physiology-Heart and Circulatory Physiology, 309(11), H1964-H1973. doi:10.1152/ajpheart.00055.2015 es_ES
dc.description.references De Jong, A. M., Maass, A. H., Oberdorf-Maass, S. U., Van Veldhuisen, D. J., Van Gilst, W. H., & Van Gelder, I. C. (2010). Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovascular Research, 89(4), 754-765. doi:10.1093/cvr/cvq357 es_ES
dc.description.references Del-Canto, I., Gomez-Cid, L., Hernandez-Romero, I., Guillem, M. S., Fern�ndez-Santos, M. E., Such, L., … Climent, A. M. (2017). Ranolazine Attenuates Stretch-induced Modifications of Electrophysiological Characteristics in HL-1 Cells. 2017 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2017.311-412 es_ES
dc.description.references Del Canto, I., Santamaría, L., Genovés, P., Such-Miquel, L., Arias-Mutis, O., Zarzoso, M., … Chorro, F. J. (2018). Effects of the Inhibition of Late Sodium Current by GS967 on Stretch-Induced Changes in Cardiac Electrophysiology. Cardiovascular Drugs and Therapy, 32(5), 413-425. doi:10.1007/s10557-018-6822-x es_ES
dc.description.references Dias, P., Desplantez, T., El-Harasis, M. A., Chowdhury, R. A., Ullrich, N. D., Cabestrero de Diego, A., … Dupont, E. (2014). Characterisation of Connexin Expression and Electrophysiological Properties in Stable Clones of the HL-1 Myocyte Cell Line. PLoS ONE, 9(2), e90266. doi:10.1371/journal.pone.0090266 es_ES
dc.description.references Entcheva, E., & Bien, H. (2006). Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution. Progress in Biophysics and Molecular Biology, 92(2), 232-257. doi:10.1016/j.pbiomolbio.2005.10.003 es_ES
dc.description.references Gong, M., Zhang, Z., Fragakis, N., Korantzopoulos, P., Letsas, K. P., Li, G., … Liu, T. (2017). Role of ranolazine in the prevention and treatment of atrial fibrillation: A meta-analysis of randomized clinical trials. Heart Rhythm, 14(1), 3-11. doi:10.1016/j.hrthm.2016.10.008 es_ES
dc.description.references Gutbrod, S. R., Walton, R., Gilbert, S., Meillet, V., Jaïs, P., Hocini, M., … Efimov, I. R. (2015). Quantification of the Transmural Dynamics of Atrial Fibrillation by Simultaneous Endocardial and Epicardial Optical Mapping in an Acute Sheep Model. Circulation: Arrhythmia and Electrophysiology, 8(2), 456-465. doi:10.1161/circep.114.002545 es_ES
dc.description.references Hong, J. H., Choi, J. H., Kim, T. Y., & Lee, K. J. (2008). Spiral reentry waves in confluent layer of HL-1 cardiomyocyte cell lines. Biochemical and Biophysical Research Communications, 377(4), 1269-1273. doi:10.1016/j.bbrc.2008.10.168 es_ES
dc.description.references Houston, C., Tzortzis, K. N., Roney, C., Saglietto, A., Pitcher, D. S., Cantwell, C. D., … Dupont, E. (2018). Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line. Journal of Molecular and Cellular Cardiology, 119, 155-164. doi:10.1016/j.yjmcc.2018.05.002 es_ES
dc.description.references Ishikawa, K., Watanabe, S., Lee, P., Akar, F. G., Lee, A., Bikou, O., … Hajjar, R. J. (2018). Acute Left Ventricular Unloading Reduces Atrial Stretch and Inhibits Atrial Arrhythmias. Journal of the American College of Cardiology, 72(7), 738-750. doi:10.1016/j.jacc.2018.05.059 es_ES
dc.description.references Jalife, J. (2010). Deja vu in the theories of atrial fibrillation dynamics. Cardiovascular Research, 89(4), 766-775. doi:10.1093/cvr/cvq364 es_ES
dc.description.references Jerling, M. (2006). Clinical Pharmacokinetics of Ranolazine. Clinical Pharmacokinetics, 45(5), 469-491. doi:10.2165/00003088-200645050-00003 es_ES
dc.description.references Karagueuzian, H. S., Pezhouman, A., Angelini, M., & Olcese, R. (2017). Enhanced Late Na and Ca Currents as Effective Antiarrhythmic Drug Targets. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00036 es_ES
dc.description.references Laughner, J. I., Ng, F. S., Sulkin, M. S., Arthur, R. M., & Efimov, I. R. (2012). Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. American Journal of Physiology-Heart and Circulatory Physiology, 303(7), H753-H765. doi:10.1152/ajpheart.00404.2012 es_ES
dc.description.references Ma, J., Luo, A., Wu, L., Wan, W., Zhang, P., Ren, Z., … Belardinelli, L. (2012). Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes. American Journal of Physiology-Cell Physiology, 302(8), C1141-C1151. doi:10.1152/ajpcell.00374.2011 es_ES
dc.description.references Maltsev, V. A., & Undrovinas, A. (2008). Late sodium current in failing heart: Friend or foe? Progress in Biophysics and Molecular Biology, 96(1-3), 421-451. doi:10.1016/j.pbiomolbio.2007.07.010 es_ES
dc.description.references Meo, M., Pambrun, T., Derval, N., Dumas-Pomier, C., Puyo, S., Duchâteau, J., … Dubois, R. (2018). Noninvasive Assessment of Atrial Fibrillation Complexity in Relation to Ablation Characteristics and Outcome. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.00929 es_ES
dc.description.references Nattel, S., & Dobrev, D. (2012). The multidimensional role of calcium in atrial fibrillation pathophysiology: mechanistic insights and therapeutic opportunities. European Heart Journal, 33(15), 1870-1877. doi:10.1093/eurheartj/ehs079 es_ES
dc.description.references Nesterenko, V. V., Zygmunt, A. C., Rajamani, S., Belardinelli, L., & Antzelevitch, C. (2011). Mechanisms of atrial-selective block of Na+ channels by ranolazine: II. Insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 301(4), H1615-H1624. doi:10.1152/ajpheart.00243.2011 es_ES
dc.description.references Neves, J. S., Leite-Moreira, A. M., Neiva-Sousa, M., Almeida-Coelho, J., Castro-Ferreira, R., & Leite-Moreira, A. F. (2016). Acute Myocardial Response to Stretch: What We (don’t) Know. Frontiers in Physiology, 6. doi:10.3389/fphys.2015.00408 es_ES
dc.description.references Pandit, S. V., Berenfeld, O., Anumonwo, J. M. B., Zaritski, R. M., Kneller, J., Nattel, S., & Jalife, J. (2005). Ionic Determinants of Functional Reentry in a 2-D Model of Human Atrial Cells During Simulated Chronic Atrial Fibrillation. Biophysical Journal, 88(6), 3806-3821. doi:10.1529/biophysj.105.060459 es_ES
dc.description.references Pandit, S. V., & Jalife, J. (2013). Rotors and the Dynamics of Cardiac Fibrillation. Circulation Research, 112(5), 849-862. doi:10.1161/circresaha.111.300158 es_ES
dc.description.references Patel, N., & Kluger, J. (2018). Ranolazine for Prevention of Atrial Fibrillation after Cardiac Surgery: A Systematic Review. Cureus. doi:10.7759/cureus.2584 es_ES
dc.description.references Peyronnet, R., Nerbonne, J. M., & Kohl, P. (2016). Cardiac Mechano-Gated Ion Channels and Arrhythmias. Circulation Research, 118(2), 311-329. doi:10.1161/circresaha.115.305043 es_ES
dc.description.references Prosser, B. L., Ward, C. W., & Lederer, W. J. (2013). X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch. Cardiovascular Research, 98(2), 307-314. doi:10.1093/cvr/cvt066 es_ES
dc.description.references Quinn, T. A., & Kohl, P. (2016). Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Progress in Biophysics and Molecular Biology, 121(2), 110-122. doi:10.1016/j.pbiomolbio.2016.05.003 es_ES
dc.description.references Ravelli, F., & Allessie, M. (1997). Effects of Atrial Dilatation on Refractory Period and Vulnerability to Atrial Fibrillation in the Isolated Langendorff-Perfused Rabbit Heart. Circulation, 96(5), 1686-1695. doi:10.1161/01.cir.96.5.1686 es_ES
dc.description.references RAVELLI, F., MASÈ, M., DEL GRECO, M., MARINI, M., & DISERTORI, M. (2010). Acute Atrial Dilatation Slows Conduction and Increases AF Vulnerability in the Human Atrium. Journal of Cardiovascular Electrophysiology, 22(4), 394-401. doi:10.1111/j.1540-8167.2010.01939.x es_ES
dc.description.references Salinet, J., Schlindwein, F. S., Stafford, P., Almeida, T. P., Li, X., Vanheusden, F. J., … Ng, G. A. (2017). Propagation of meandering rotors surrounded by areas of high dominant frequency in persistent atrial fibrillation. Heart Rhythm, 14(9), 1269-1278. doi:10.1016/j.hrthm.2017.04.031 es_ES
dc.description.references Seo, K., Inagaki, M., Hidaka, I., Fukano, H., Sugimachi, M., Hisada, T., … Sugiura, S. (2014). Relevance of cardiomyocyte mechano-electric coupling to stretch-induced arrhythmias: Optical voltage/calcium measurement in mechanically stimulated cells, tissues and organs. Progress in Biophysics and Molecular Biology, 115(2-3), 129-139. doi:10.1016/j.pbiomolbio.2014.07.008 es_ES
dc.description.references Shryock, J. C., Song, Y., Rajamani, S., Antzelevitch, C., & Belardinelli, L. (2013). The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovascular Research, 99(4), 600-611. doi:10.1093/cvr/cvt145 es_ES
dc.description.references Song, Y., Shryock, J. C., & Belardinelli, L. (2008). An increase of late sodium current induces delayed afterdepolarizations and sustained triggered activity in atrial myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 294(5), H2031-H2039. doi:10.1152/ajpheart.01357.2007 es_ES
dc.description.references Sossalla, S., Kallmeyer, B., Wagner, S., Mazur, M., Maurer, U., Toischer, K., … Maier, L. S. (2010). Altered Na+Currents in Atrial Fibrillation. Journal of the American College of Cardiology, 55(21), 2330-2342. doi:10.1016/j.jacc.2009.12.055 es_ES
dc.description.references Strege, P., Beyder, A., Bernard, C., Crespo-Diaz, R., Behfar, A., Terzic, A., … Farrugia, G. (2012). Ranolazine inhibits shear sensitivity of endogenous Na+current and spontaneous action potentials in HL-1 cells. Channels, 6(6), 457-462. doi:10.4161/chan.22017 es_ES
dc.description.references Tsai, C.-T., Chiang, F.-T., Tseng, C.-D., Yu, C.-C., Wang, Y.-C., Lai, L.-P., … Lin, J.-L. (2011). Mechanical Stretch of Atrial Myocyte Monolayer Decreases Sarcoplasmic Reticulum Calcium Adenosine Triphosphatase Expression and Increases Susceptibility to Repolarization Alternans. Journal of the American College of Cardiology, 58(20), 2106-2115. doi:10.1016/j.jacc.2011.07.039 es_ES
dc.description.references White, S. M., Constantin, P. E., & Claycomb, W. C. (2004). Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. American Journal of Physiology-Heart and Circulatory Physiology, 286(3), H823-H829. doi:10.1152/ajpheart.00986.2003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem