- -

Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peng, Yong es_ES
dc.contributor.author Rendon-Patiño, Alejandra es_ES
dc.contributor.author Franconetti, Antonio es_ES
dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-05-07T03:32:35Z
dc.date.available 2021-05-07T03:32:35Z
dc.date.issued 2020-07-27 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166064
dc.description.abstract [EN] Pyrolysis of alpha-, beta-, and gamma-cyclodextrins at 900 degrees C under Ar forms porous 3D graphitic carbon nanoparticles with remarkable crystallinity, in which the pore dimensions range from 0.74 to 1.1 nm in the ultra/micropore range as determined by N-2, Ar, and CO2 adsorption. These materials behave as semiconductors with the potential energy of the conduction and valence bands being remarkably dependent in as much as 0.57 eV on the dimensions of the micropores. The photogeneration of electrons and holes was confirmed by photodeposition of Pt (electrons) and PbO2 (holes) nanoparticles by reduction and oxidation, respectively. Importantly, these 3D porous graphitic carbons generate H-2 and O-2 from H2O in the absence of any metal cocatalyst. Theoretical calculations at the DFT level confirm in models the influence of the dimensions of the pores, the presence of defects, and residual oxygen on the band energy and that the occurrence of H2O dissociation is favored inside the pores by a confinement effect. Considering the interest in developing metal-free photocatalyst, the present results show the possibility to tune the band alignment of porous carbon semiconductors by appropriate selection of precursors and the convenient generation of defects. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and CTQ2018-98237-CO2-1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. We also thank the Center of Supercomputing of Galicia (CESGA) for the computational facilities. A.P. thanks the Spanish Ministry of Science and Innovation for a Ramon y Cajal research associate contract. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Applied Energy Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Porous carbon es_ES
dc.subject Cyclodextrin pyrolysis es_ES
dc.subject Metal-free photocatalysis es_ES
dc.subject Photocatalytic hydrogen generation es_ES
dc.subject Photocatalytic oxygen generation es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acsaem.0c00789 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Peng, Y.; Rendon-Patiño, A.; Franconetti, A.; Albero-Sancho, J.; Primo Arnau, AM.; García Gómez, H. (2020). Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins. ACS Applied Energy Materials. 3(7):6623-6632. https://doi.org/10.1021/acsaem.0c00789 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acsaem.0c00789 es_ES
dc.description.upvformatpinicio 6623 es_ES
dc.description.upvformatpfin 6632 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2574-0962 es_ES
dc.relation.pasarela S\430128 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Chua, C. K., & Pumera, M. (2015). Carbocatalysis: The State of «Metal-Free» Catalysis. Chemistry - A European Journal, 21(36), 12550-12562. doi:10.1002/chem.201501383 es_ES
dc.description.references Ortiz‐Medina, J., Wang, Z., Cruz‐Silva, R., Morelos‐Gomez, A., Wang, F., Yao, X., … Endo, M. (2019). Catalytic Nanocarbons: Defect Engineering and Surface Functionalization of Nanocarbons for Metal‐Free Catalysis (Adv. Mater. 13/2019). Advanced Materials, 31(13), 1970096. doi:10.1002/adma.201970096 es_ES
dc.description.references Esteve-Adell, I., He, J., Ramiro, F., Atienzar, P., Primo, A., & García, H. (2018). Catalyst-free one step synthesis of large area vertically stacked N-doped graphene-boron nitride heterostructures from biomass source. Nanoscale, 10(9), 4391-4397. doi:10.1039/c7nr08424b es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156h es_ES
dc.description.references Melchionna, M., & Fornasiero, P. (2020). Updates on the Roadmap for Photocatalysis. ACS Catalysis, 10(10), 5493-5501. doi:10.1021/acscatal.0c01204 es_ES
dc.description.references Li, C., Xu, Y., Tu, W., Chen, G., & Xu, R. (2017). Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 19(4), 882-899. doi:10.1039/c6gc02856j es_ES
dc.description.references An, X., & Yu, J. C. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426. doi:10.1039/c1ra00382h es_ES
dc.description.references Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2012). Design of graphene-based TiO2 photocatalysts—a review. Environmental Science and Pollution Research, 19(9), 3676-3687. doi:10.1007/s11356-012-0939-4 es_ES
dc.description.references Albero, J., Mateo, D., & García, H. (2019). Graphene-Based Materials as Efficient Photocatalysts for Water Splitting. Molecules, 24(5), 906. doi:10.3390/molecules24050906 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 es_ES
dc.description.references Rendón-Patiño, A., Niu, J., Doménech-Carbó, A., García, H., & Primo, A. (2019). Polystyrene as Graphene Film and 3D Graphene Sponge Precursor. Nanomaterials, 9(1), 101. doi:10.3390/nano9010101 es_ES
dc.description.references Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197 es_ES
dc.description.references Bender, M. L., & Komiyama, M. (1978). Cyclodextrin Chemistry. Reactivity and Structure Concepts in Organic Chemistry. doi:10.1007/978-3-642-66842-5 es_ES
dc.description.references Trotta, F., Zanetti, M., & Camino, G. (2000). Thermal degradation of cyclodextrins. Polymer Degradation and Stability, 69(3), 373-379. doi:10.1016/s0141-3910(00)00084-7 es_ES
dc.description.references St. Dennis, J. E., Venkataraman, P., He, J., John, V. T., Obrey, S. J., Currier, R. P., … Meador, M. A. (2011). Rod-like carbon nanostructures produced by the direct pyrolysis of α-cyclodextrin. Carbon, 49(2), 718-722. doi:10.1016/j.carbon.2010.09.027 es_ES
dc.description.references Tan, X., Ji, Y., Dong, H., Liu, M., Hou, T., & Li, Y. (2017). A novel metal-free two-dimensional material for photocatalytic water splitting – phosphorus nitride (γ-PN). RSC Adv., 7(79), 50239-50245. doi:10.1039/c7ra10305k es_ES
dc.description.references Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522 es_ES
dc.description.references Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a es_ES
dc.description.references Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344 es_ES
dc.description.references Husnah, M., Fakhri, H. A., Rohman, F., Aimon, A. H., & Iskandar, F. (2017). A modified Marcano method for improving electrical properties of reduced graphene oxide (rGO). Materials Research Express, 4(6), 064001. doi:10.1088/2053-1591/aa707f es_ES
dc.description.references Tang, L., Wang, Y., Li, Y., Feng, H., Lu, J., & Li, J. (2009). Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Advanced Functional Materials, 19(17), 2782-2789. doi:10.1002/adfm.200900377 es_ES
dc.description.references Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., … Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 195, 145-154. doi:10.1016/j.elspec.2014.07.003 es_ES
dc.description.references Lozinska, M. M., Mowat, J. P. S., Wright, P. A., Thompson, S. P., Jorda, J. L., Palomino, M., … Rey, F. (2014). Cation Gating and Relocation during the Highly Selective «Trapdoor» Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho. Chemistry of Materials, 26(6), 2052-2061. doi:10.1021/cm404028f es_ES
dc.description.references Katnani, A. D., & Margaritondo, G. (1983). Microscopic study of semiconductor heterojunctions: Photoemission measurement of the valance-band discontinuity and of the potential barriers. Physical Review B, 28(4), 1944-1956. doi:10.1103/physrevb.28.1944 es_ES
dc.description.references Kim, P., Odom, T. W., Huang, J.-L., & Lieber, C. M. (1999). Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States. Physical Review Letters, 82(6), 1225-1228. doi:10.1103/physrevlett.82.1225 es_ES
dc.description.references Zou, J.-P., Wang, L.-C., Luo, J., Nie, Y.-C., Xing, Q.-J., Luo, X.-B., … Suib, S. L. (2016). Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst. Applied Catalysis B: Environmental, 193, 103-109. doi:10.1016/j.apcatb.2016.04.017 es_ES
dc.description.references Zhao, D., Dong, C., Wang, B., Chen, C., Huang, Y., Diao, Z., … Shen, S. (2019). Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution. Advanced Materials, 31(43), 1903545. doi:10.1002/adma.201903545 es_ES
dc.description.references Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar Water Splitting Cells. Chemical Reviews, 110(11), 6446-6473. doi:10.1021/cr1002326 es_ES
dc.description.references Charlier, J.-C. (2002). Defects in Carbon Nanotubes. Accounts of Chemical Research, 35(12), 1063-1069. doi:10.1021/ar010166k es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem