- -

Calculation of Lambda modes of the multi-group neutron transport equation using the discrete ordinates and Finite Difference Method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calculation of Lambda modes of the multi-group neutron transport equation using the discrete ordinates and Finite Difference Method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morató-Rafet, Sergio es_ES
dc.contributor.author Bernal, Á. es_ES
dc.contributor.author Miró Herrero, Rafael es_ES
dc.contributor.author Román Moltó, José Enrique es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2021-05-12T03:32:14Z
dc.date.available 2021-05-12T03:32:14Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 0306-4549 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166215
dc.description.abstract [EN] The method explained in this paper solves the steady-state of the neutron transport equation for 1D and 2D systems modeled with Cartesian geometry, by using the Discrete Ordinates method SN for the angular discretization and the Finite Difference Method for the spatial discretization. The method applies the multi-group approach for any energy discretization, including upscattering terms. The method solves the steady-state equation by solving a generalized eigenvalue problem by means of a Krylov-Schur method. One of the main advantages of the method is the capability to calculate multiple eigenfunctions. The Discrete Ordinates methodology is used for the angular discretization, which uses a simple formulation involving the angles and direction cosines. The spatial discretization with Finite Difference Method is selected for its simplicity. The method is validated with several one-dimensional benchmark problems and four two dimensional benchmark problems. The results show good agreement with respect to the reference results for all the cases studied. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Agencia Estatal de Investigation [Grant No. BES-2016-076782], Ministerio de Eduacion Cultura y Deporte [Grant No. FPU13/01009] and the Spanish Ministerio de Economia Industria y Competitividad [project ENE2015-68353-P]. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Annals of Nuclear Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Neutron transport es_ES
dc.subject Discrete ordinates es_ES
dc.subject Multigroup es_ES
dc.subject Finite Difference Method es_ES
dc.subject Multiple Eigenvalues es_ES
dc.subject Anisotropic es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Calculation of Lambda modes of the multi-group neutron transport equation using the discrete ordinates and Finite Difference Method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.anucene.2019.107077 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F01009/ES/FPU13%2F01009/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-68353-P/ES/DESARROLLO DE UN CODIGO DE TRANSPORTE NEUTRONICO MODAL 3D POR EL METODO DE LOS VOLUMENES FINITOS Y ORDENADAS DISCRETAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-076782/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096437-B-I00/ES/APLICACION INTEGRADA DE FISICA DE REACTORES PARA SIMULACIONES A GRAN ESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Morató-Rafet, S.; Bernal, Á.; Miró Herrero, R.; Román Moltó, JE.; Verdú Martín, GJ. (2020). Calculation of Lambda modes of the multi-group neutron transport equation using the discrete ordinates and Finite Difference Method. Annals of Nuclear Energy. 137:1-15. https://doi.org/10.1016/j.anucene.2019.107077 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.anucene.2019.107077 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 137 es_ES
dc.relation.pasarela S\396052 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Abu-Shumays, I. K. (2001). ANGULAR QUADRATURES FOR IMPROVED TRANSPORT COMPUTATIONS. Transport Theory and Statistical Physics, 30(2-3), 169-204. doi:10.1081/tt-100105367 es_ES
dc.description.references Alcouffe, R.E., Baker, R.S., Brinkley, F.W., Marr, D.R., O’Dell, R.D., Walters, W.F., 1995. Dantsys: a diffusion accelerated neutral particle transport code system. es_ES
dc.description.references Bernal, Á., Hébert, A., Roman, J. E., Miró, R., & Verdú, G. (2017). A Krylov–Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart–Thomas method. Journal of Nuclear Science and Technology, 54(10), 1085-1094. doi:10.1080/00223131.2017.1344577 es_ES
dc.description.references Bernal García, Á., 2018. Development of a 3d modal neutron code with the finite volume method for the diffusion and discrete ordinates transport equations. Application to nuclear safety analyses (Ph.D. thesis). es_ES
dc.description.references Brantley, P. S., & Larsen, E. W. (2000). The SimplifiedP3Approximation. Nuclear Science and Engineering, 134(1), 1-21. doi:10.13182/nse134-01 es_ES
dc.description.references Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2008). A nodal collocation approximation for the multi-dimensional equations – 2D applications. Annals of Nuclear Energy, 35(10), 1820-1830. doi:10.1016/j.anucene.2008.04.008 es_ES
dc.description.references Capilla, M. T., Talavera, C. F., Ginestar, D., & Verdú, G. (2018). Numerical analysis of the 2D C5G7 MOX benchmark using PL equations and a nodal collocation method. Annals of Nuclear Energy, 114, 32-41. doi:10.1016/j.anucene.2017.12.002 es_ES
dc.description.references Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2018). Block hybrid multilevel method to compute the dominant λ-modes of the neutron diffusion equation. Annals of Nuclear Energy, 121, 513-524. doi:10.1016/j.anucene.2018.08.010 es_ES
dc.description.references Hébert, A., 2009. Applied reactor physics, Presses inter Polytechnique. es_ES
dc.description.references Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 es_ES
dc.description.references Issa, J. G., Riyait, N. S., Goddard, A. J. H., & Stott, G. E. (1986). Multigroup application of the anisotropic FEM code FELTRAN to one, two, three-dimensions and R-Z problems. Progress in Nuclear Energy, 18(1-2), 251-264. doi:10.1016/0149-1970(86)90031-4 es_ES
dc.description.references Jung, Y., 2010. ntracer v1. 0 methodology manual, SNURPL-CM001 (10), Seoul National University Reactor Physics Laboratory, Seoul, Republic of Korea. es_ES
dc.description.references Kashi, S., Minuchehr, A., Zolfaghari, A., & Rokrok, B. (2017). Mesh-free method for numerical solution of the multi-group discrete ordinate neutron transport equation. Annals of Nuclear Energy, 106, 51-63. doi:10.1016/j.anucene.2017.03.034 es_ES
dc.description.references Koch, R., & Becker, R. (2004). Evaluation of quadrature schemes for the discrete ordinates method. Journal of Quantitative Spectroscopy and Radiative Transfer, 84(4), 423-435. doi:10.1016/s0022-4073(03)00260-7 es_ES
dc.description.references Kornreich, D. E., & Parsons, D. K. (2004). The Green’s function method for effective multiplication benchmark calculations in multi-region slab geometry. Annals of Nuclear Energy, 31(13), 1477-1494. doi:10.1016/j.anucene.2004.03.012 es_ES
dc.description.references Lathrop, K. D. (1968). Ray Effects in Discrete Ordinates Equations. Nuclear Science and Engineering, 32(3), 357-369. doi:10.13182/nse68-4 es_ES
dc.description.references Lewis, E.E., Miller, W.F., Jr, 1984. Computational methods of neutron transport. es_ES
dc.description.references Marleau, G., Hébert, A., Roy, R., 2008. A user guide for dragon 3.06, Report IGE-174 Rev 7. es_ES
dc.description.references Rhoades, W., Childs, R., 1993. Dort/tort two-and three-dimensional discrete ordinates transport, version 2.7. 3. ornl, oak ridge, Tech. rep., RSIC-CCC-543. es_ES
dc.description.references Smith, M., Lewis, E., Na, B., 2003. Benchmark on deterministic transport calculations without spatial homogenization: A 2-d/3-d mox fuel assembly 3-d benchmark; 2003. es_ES
dc.description.references Sood, A., Forster, R. A., & Kent Parsons, D. (2003). Analytical benchmark test set for criticality code verification. Progress in Nuclear Energy, 42(1), 55-106. doi:10.1016/s0149-1970(02)00098-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem