- -

Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid - Gelatin injectable hydrogels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid - Gelatin injectable hydrogels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vaca-González, Juan Jairo es_ES
dc.contributor.author Clara-Trujillo, Sandra es_ES
dc.contributor.author Guillot-Ferriols, María Teresa es_ES
dc.contributor.author Ródenas Rochina, Joaquín es_ES
dc.contributor.author Sanchis Sánchez, María Jesús es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Garzón-Alvarado, Diego Alexander es_ES
dc.contributor.author Gallego Ferrer, Gloria es_ES
dc.date.accessioned 2021-05-12T03:32:23Z
dc.date.available 2021-05-12T03:32:23Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 1567-5394 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166218
dc.description.abstract [EN] Electrical stimulation (ES) has provided enhanced chondrogenesis of mesenchymal stem cells (MSCs) cultured in micro-mass without the addition of exogenous growth factors. In this study, we demonstrate for the first time that ES of MSCs encapsulated in an injectable hyaluronic acid (HA) - gelatin (GEL) mixture enhances the chondrogenic potential of the hydrogel. Samples were stimulated for 21 days with 10 mV/cm at 60 kHz, applied for 30 min every 6 h a day. Mechanical properties of hydrogels were higher if the precursors were dissolved in Calcium-Free Krebs Ringer Buffer (G' = 1141 +/- 23 Pa) compared to those diluted in culture media (G' = 213 +/- 19 Pa). Cells within stimulated hydrogels were rounder (55%) than non-stimulated cultures (32%) (p = 0.005). Chondrogenic markers such as SOX-9 and aggrecan were higher in stimulated hydrogels compared to controls. The ES demonstrated that normalized content of glycosaminoglycans and collagen to DNA was slightly higher in stimulated samples. Additionally, collagen type II normalized to total collagen was 2.43 times higher in stimulated hydrogels. These findings make ES a promising tool for enhancing articular cartilage tissue engineering outcomes by combining hydrogels and MSCs. es_ES
dc.description.sponsorship The financial support received from COLCIENCIAS through Fellowship No. 647 and Grant 712-2015 No. 50457 is acknowledged, as is that from the Spain Ministry of Economy and Competitiveness through the MAT2016-76039-C4-1-R project (including the Feder Funds). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Bioelectrochemistry es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Chondrogenic differentiation es_ES
dc.subject Electric fields es_ES
dc.subject Injectable hydrogels es_ES
dc.subject Hyaluronic acid es_ES
dc.subject Gelatin Mesenchymal stem cells es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.title Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid - Gelatin injectable hydrogels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.bioelechem.2020.107536 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//712-2015 50457/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//647/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Vaca-González, JJ.; Clara-Trujillo, S.; Guillot-Ferriols, MT.; Ródenas Rochina, J.; Sanchis Sánchez, MJ.; Gómez Ribelles, JL.; Garzón-Alvarado, DA.... (2020). Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid - Gelatin injectable hydrogels. Bioelectrochemistry. 134:1-11. https://doi.org/10.1016/j.bioelechem.2020.107536 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.bioelechem.2020.107536 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 134 es_ES
dc.identifier.pmid 32335352 es_ES
dc.relation.pasarela S\409236 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Vaca-González, J. J., Guevara, J. M., Moncayo, M. A., Castro-Abril, H., Hata, Y., & Garzón-Alvarado, D. A. (2017). Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage. CARTILAGE, 10(2), 157-172. doi:10.1177/1947603517730637 es_ES
dc.description.references Awad, H. A., Quinn Wickham, M., Leddy, H. A., Gimble, J. M., & Guilak, F. (2004). Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 25(16), 3211-3222. doi:10.1016/j.biomaterials.2003.10.045 es_ES
dc.description.references Akanji, O. O., Lee, D. A., & Bader, D. A. (2008). The effects of direct current stimulation on isolated chondrocytes seeded in 3D agarose constructs. Biorheology, 45(3-4), 229-243. doi:10.3233/bir-2008-0473 es_ES
dc.description.references Burnsed, O. A., Schwartz, Z., Marchand, K. O., Hyzy, S. L., Olivares-Navarrete, R., & Boyan, B. D. (2016). Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta Biomaterialia, 43, 139-149. doi:10.1016/j.actbio.2016.07.034 es_ES
dc.description.references Singh, D., Tripathi, A., Zo, S., Singh, D., & Han, S. S. (2014). Synthesis of composite gelatin-hyaluronic acid-alginate porous scaffold and evaluation for in vitro stem cell growth and in vivo tissue integration. Colloids and Surfaces B: Biointerfaces, 116, 502-509. doi:10.1016/j.colsurfb.2014.01.049 es_ES
dc.description.references Kim, I. L., Mauck, R. L., & Burdick, J. A. (2011). Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid. Biomaterials, 32(34), 8771-8782. doi:10.1016/j.biomaterials.2011.08.073 es_ES
dc.description.references Moulisová, V., Poveda-Reyes, S., Sanmartín-Masiá, E., Quintanilla-Sierra, L., Salmerón-Sánchez, M., & Gallego Ferrer, G. (2017). Hybrid Protein–Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation. ACS Omega, 2(11), 7609-7620. doi:10.1021/acsomega.7b01303 es_ES
dc.description.references Levett, P. A., Melchels, F. P. W., Schrobback, K., Hutmacher, D. W., Malda, J., & Klein, T. J. (2014). A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomaterialia, 10(1), 214-223. doi:10.1016/j.actbio.2013.10.005 es_ES
dc.description.references Chen, Y.-C., Su, W.-Y., Yang, S.-H., Gefen, A., & Lin, F.-H. (2013). In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration. Acta Biomaterialia, 9(2), 5181-5193. doi:10.1016/j.actbio.2012.09.039 es_ES
dc.description.references Murphy, C. M., Matsiko, A., Haugh, M. G., Gleeson, J. P., & O’Brien, F. J. (2012). Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 11, 53-62. doi:10.1016/j.jmbbm.2011.11.009 es_ES
dc.description.references Shu, X. Z., Liu, Y., Palumbo, F., & Prestwich, G. D. (2003). Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials, 24(21), 3825-3834. doi:10.1016/s0142-9612(03)00267-9 es_ES
dc.description.references Vanderhooft, J. L., Alcoutlabi, M., Magda, J. J., & Prestwich, G. D. (2009). Rheological Properties of Cross-Linked Hyaluronan-Gelatin Hydrogels for Tissue Engineering. Macromolecular Bioscience, 9(1), 20-28. doi:10.1002/mabi.200800141 es_ES
dc.description.references Camci-Unal, G., Cuttica, D., Annabi, N., Demarchi, D., & Khademhosseini, A. (2013). Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels. Biomacromolecules, 14(4), 1085-1092. doi:10.1021/bm3019856 es_ES
dc.description.references Puetzer, J. L., Petitte, J. N., & Loboa, E. G. (2010). Comparative Review of Growth Factors for Induction of Three-DimensionalIn VitroChondrogenesis in Human Mesenchymal Stem Cells Isolated from Bone Marrow and Adipose Tissue. Tissue Engineering Part B: Reviews, 16(4), 435-444. doi:10.1089/ten.teb.2009.0705 es_ES
dc.description.references Hwang, N. S., Kim, M. S., Sampattavanich, S., Baek, J. H., Zhang, Z., & Elisseeff, J. (2006). Effects of Three-Dimensional Culture and Growth Factors on the Chondrogenic Differentiation of Murine Embryonic Stem Cells. Stem Cells, 24(2), 284-291. doi:10.1634/stemcells.2005-0024 es_ES
dc.description.references Balint, R., Cassidy, N. J., & Cartmell, S. H. (2013). Electrical Stimulation: A Novel Tool for Tissue Engineering. Tissue Engineering Part B: Reviews, 19(1), 48-57. doi:10.1089/ten.teb.2012.0183 es_ES
dc.description.references N. Tandon, et al., Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation, in: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 6517–6521. es_ES
dc.description.references Zhao, Z., Watt, C., Karystinou, A., Roelofs, A., McCaig, C., … De Bari, C. (2011). Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field. European Cells and Materials, 22, 344-358. doi:10.22203/ecm.v022a26 es_ES
dc.description.references Banks, T. A., Luckman, P. S. B., Frith, J. E., & Cooper-White, J. J. (2015). Effects of electric fields on human mesenchymal stem cell behaviour and morphology using a novel multichannel device. Integrative Biology, 7(6), 693-712. doi:10.1039/c4ib00297k es_ES
dc.description.references Hernández-Bule, M. L., Paíno, C. L., Trillo, M. Á., & Úbeda, A. (2014). Electric Stimulation at 448 kHz Promotes Proliferation of Human Mesenchymal Stem Cells. Cellular Physiology and Biochemistry, 34(5), 1741-1755. doi:10.1159/000366375 es_ES
dc.description.references Xu, J., Wang, W., Clark, C. C., & Brighton, C. T. (2009). Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthritis and Cartilage, 17(3), 397-405. doi:10.1016/j.joca.2008.07.001 es_ES
dc.description.references Taghian, T., Narmoneva, D. A., & Kogan, A. B. (2015). Modulation of cell function by electric field: a high-resolution analysis. Journal of The Royal Society Interface, 12(107), 20150153. doi:10.1098/rsif.2015.0153 es_ES
dc.description.references Sundelacruz, S., Levin, M., & Kaplan, D. L. (2009). Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation. Stem Cell Reviews and Reports, 5(3), 231-246. doi:10.1007/s12015-009-9080-2 es_ES
dc.description.references Rodenas-Rochina, J., Kelly, D. J., Gómez Ribelles, J. L., & Lebourg, M. (2016). Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells. Biomedical Physics & Engineering Express, 2(3), 035005. doi:10.1088/2057-1976/2/3/035005 es_ES
dc.description.references Poveda-Reyes, S., Moulisova, V., Sanmartín-Masiá, E., Quintanilla-Sierra, L., Salmerón-Sánchez, M., & Ferrer, G. G. (2016). Gelatin-Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation. Macromolecular Bioscience, 16(9), 1311-1324. doi:10.1002/mabi.201500469 es_ES
dc.description.references Sanmartín-Masiá, E., Poveda-Reyes, S., & Gallego Ferrer, G. (2016). Extracellular matrix–inspired gelatin/hyaluronic acid injectable hydrogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(6), 280-288. doi:10.1080/00914037.2016.1201828 es_ES
dc.description.references Shu, X. Z., Liu, Y., Luo, Y., Roberts, M. C., & Prestwich, G. D. (2002). Disulfide Cross-Linked Hyaluronan Hydrogels. Biomacromolecules, 3(6), 1304-1311. doi:10.1021/bm025603c es_ES
dc.description.references Thorpe, S. D., Buckley, C. T., Vinardell, T., O’Brien, F. J., Campbell, V. A., & Kelly, D. J. (2008). Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 377(2), 458-462. doi:10.1016/j.bbrc.2008.09.154 es_ES
dc.description.references Lennon, D. P., & Caplan, A. I. (2006). Isolation of human marrow-derived mesenchymal stem cells. Experimental Hematology, 34(11), 1604-1605. doi:10.1016/j.exphem.2006.07.014 es_ES
dc.description.references Vaca-González, J. J., Guevara, J. M., Vega, J. F., & Garzón-Alvarado, D. A. (2015). An In Vitro Chondrocyte Electrical Stimulation Framework: A Methodology to Calculate Electric Fields and Modulate Proliferation, Cell Death and Glycosaminoglycan Synthesis. Cellular and Molecular Bioengineering, 9(1), 116-126. doi:10.1007/s12195-015-0419-2 es_ES
dc.description.references Vaca-González, J. J., Escobar, J. F., Guevara, J. M., Hata, Y. A., Gallego Ferrer, G., & Garzón-Alvarado, D. A. (2019). Capacitively coupled electrical stimulation of rat chondroepiphysis explants: A histomorphometric analysis. Bioelectrochemistry, 126, 1-11. doi:10.1016/j.bioelechem.2018.11.004 es_ES
dc.description.references Casado, J. G., Gomez-Mauricio, G., Alvarez, V., Mijares, J., Tarazona, R., Bernad, A., & Sanchez-Margallo, F. M. (2012). Comparative phenotypic and molecular characterization of porcine mesenchymal stem cells from different sources for translational studies in a large animal model. Veterinary Immunology and Immunopathology, 147(1-2), 104-112. doi:10.1016/j.vetimm.2012.03.015 es_ES
dc.description.references Donnelly, P. E., Chen, T., Finch, A., Brial, C., Maher, S. A., & Torzilli, P. A. (2017). Photocrosslinked tyramine-substituted hyaluronate hydrogels with tunable mechanical properties improve immediate tissue-hydrogel interfacial strength in articular cartilage. Journal of Biomaterials Science, Polymer Edition, 28(6), 582-600. doi:10.1080/09205063.2017.1289035 es_ES
dc.description.references Pietrucha, K., & Marzec, E. (2005). Dielectric properties of the collagen–glycosaminoglycans scaffolds in the temperature range of thermal decomposition. Biophysical Chemistry, 118(1), 51-56. doi:10.1016/j.bpc.2005.07.006 es_ES
dc.description.references Dvořáková, J., Kučera, L., Kučera, J., Švík, K., Foglarová, M., Muthný, T., … Kubala, L. (2013). Chondrogenic differentiation of mesenchymal stem cells in a hydrogel system based on an enzymatically crosslinked tyramine derivative of hyaluronan. Journal of Biomedical Materials Research Part A, 102(10), 3523-3530. doi:10.1002/jbm.a.35033 es_ES
dc.description.references Chung, C., & Burdick, J. A. (2009). Influence of Three-Dimensional Hyaluronic Acid Microenvironments on Mesenchymal Stem Cell Chondrogenesis. Tissue Engineering Part A, 15(2), 243-254. doi:10.1089/ten.tea.2008.0067 es_ES
dc.description.references Salamon, A., van Vlierberghe, S., van Nieuwenhove, I., Baudisch, F., Graulus, G.-J., Benecke, V., … Peters, K. (2014). Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro. Materials, 7(2), 1342-1359. doi:10.3390/ma7021342 es_ES
dc.description.references Ogawa, T., Akazawa, T., & Tabata, Y. (2010). In Vitro Proliferation and Chondrogenic Differentiation of Rat Bone Marrow Stem Cells Cultured with Gelatin Hydrogel Microspheres for TGF-β1 Release. Journal of Biomaterials Science, Polymer Edition, 21(5), 609-621. doi:10.1163/156856209x434638 es_ES
dc.description.references J.F. Escobar, Evaluación in vitro del efecto de una estimulación con campos magnéticos a condrocitos, Universidad Nacional de Colombia, 2019. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem