- -

A three-stage chemical cleaning of ion-exchange membranes used in the treatment by electrodialysis of wastewaters generated in brass electroplating industries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A three-stage chemical cleaning of ion-exchange membranes used in the treatment by electrodialysis of wastewaters generated in brass electroplating industries

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santana Barros, Kayo es_ES
dc.contributor.author Martí Calatayud, Manuel César es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.contributor.author Espinosa, Denise Crocce Romano es_ES
dc.date.accessioned 2021-05-13T03:32:32Z
dc.date.available 2021-05-13T03:32:32Z
dc.date.issued 2020-10-15 es_ES
dc.identifier.issn 0011-9164 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166271
dc.description.abstract [EN] After long-term electrodialysis, cleaning the membranes is crucial to extend their lifetime. In this work, we evaluate the effects of a three-stage chemical cleaning on electrochemical and structural properties of anion- and cation-exchange membranes. Membranes used in the electrodialytic treatment of a synthetic effluent from the cyanide-free brass electrodeposition were cleaned using 0.1, 0.5 and 1.0 mol.L-1 NaOH solutions. The electrochemical behavior of the membranes was evaluated after each cleaning step by chronopotentiometry. Additionally, changes in the membrane structure and composition were analyzed by FTIR-ATR and SEM/EDS. While the membranes undergo a decline in some electrochemical features after the electrodialysis process, the cleaning with 0.1 mol.L-1 NaOH showed to be the most effective in recovering the properties characteristic of the virgin membranes: the limiting current density increased by 84% after the cleaning, whereas the ohmic and overlimiting resistances decreased by 47% and 55%, respectively. In contrast, the 0.5 and 1.0 mol.L-1 NaOH solutions degraded the membranes and reduced their fraction of conducive area, especially for the anion-exchange one. This favored fouling/scaling occurrence, as noticed by a prominent increase in the potential drop of the anion-exchange membrane. FTIR-ATR and SEM/EDS analyses confirmed fouling/scaling, as well as degradation of the ion-exchange membranes. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support given by funding agencies CNPq (Process 141346/2016-7) and CAPES (Process 88881.190502/2018-01). This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Desalination es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Alkaline cleaning es_ES
dc.subject Chronopotentiometry es_ES
dc.subject Ion-exchange membranes es_ES
dc.subject Membrane cleaning es_ES
dc.subject Membrane fouling es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title A three-stage chemical cleaning of ion-exchange membranes used in the treatment by electrodialysis of wastewaters generated in brass electroplating industries es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.desal.2020.114628 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//141346%2F2016-7/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//88881.190502%2F2018-01/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Santana Barros, K.; Martí Calatayud, MC.; Pérez-Herranz, V.; Espinosa, DCR. (2020). A three-stage chemical cleaning of ion-exchange membranes used in the treatment by electrodialysis of wastewaters generated in brass electroplating industries. Desalination. 492:1-11. https://doi.org/10.1016/j.desal.2020.114628 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.desal.2020.114628 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 492 es_ES
dc.relation.pasarela S\416992 es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Vera, E., Ruales, J., Dornier, M., Sandeaux, J., Sandeaux, R., & Pourcelly, G. (2003). Deacidification of clarified passion fruit juice using different configurations of electrodialysis. Journal of Chemical Technology & Biotechnology, 78(8), 918-925. doi:10.1002/jctb.827 es_ES
dc.description.references LABBE, D., ARAYAFARIAS, M., TREMBLAY, A., & BAZINET, L. (2005). Electromigration feasibility of green tea catechins. Journal of Membrane Science, 254(1-2), 101-109. doi:10.1016/j.memsci.2004.10.048 es_ES
dc.description.references Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031 es_ES
dc.description.references Strathmann, H. (2010). Chapter 6 Ion-Exchange Membrane Processes in Water Treatment. Sustainability Science and Engineering, 141-199. doi:10.1016/s1871-2711(09)00206-2 es_ES
dc.description.references Marder, L., Ortega Navarro, E. M., Pérez-Herranz, V., Bernardes, A. M., & Ferreira, J. Z. (2006). Evaluation of transition metals transport properties through a cation-exchange membrane by chronopotentiometry. Journal of Membrane Science, 284(1-2), 267-275. doi:10.1016/j.memsci.2006.07.039 es_ES
dc.description.references García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Evaluation of two ion-exchange membranes for the transport of tin in the presence of hydrochloric acid. Journal of Membrane Science, 371(1-2), 65-74. doi:10.1016/j.memsci.2011.01.015 es_ES
dc.description.references Barros, K. S., Ortega, E. M., Pérez-Herranz, V., & Espinosa, D. C. R. (2020). Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent. Journal of Electroanalytical Chemistry, 865, 114129. doi:10.1016/j.jelechem.2020.114129 es_ES
dc.description.references Barros, K. S., & Espinosa, D. C. R. (2018). Chronopotentiometry of an anion-exchange membrane for treating a synthesized free-cyanide effluent from brass electrodeposition with EDTA as chelating agent. Separation and Purification Technology, 201, 244-255. doi:10.1016/j.seppur.2018.03.013 es_ES
dc.description.references Barros, K. S., Scarazzato, T., Pérez-Herranz, V., & Espinosa, D. C. R. (2020). Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations. Membranes, 10(4), 69. doi:10.3390/membranes10040069 es_ES
dc.description.references Scarazzato, T., Panossian, Z., Tenório, J. A. S., Pérez-Herranz, V., & Espinosa, D. C. R. (2018). Water reclamation and chemicals recovery from a novel cyanide-free copper plating bath using electrodialysis membrane process. Desalination, 436, 114-124. doi:10.1016/j.desal.2018.01.005 es_ES
dc.description.references Mikhaylin, S., & Bazinet, L. (2016). Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control. Advances in Colloid and Interface Science, 229, 34-56. doi:10.1016/j.cis.2015.12.006 es_ES
dc.description.references Barros, K. S., Scarazzato, T., & Espinosa, D. C. R. (2018). Evaluation of the effect of the solution concentration and membrane morphology on the transport properties of Cu(II) through two monopolar cation–exchange membranes. Separation and Purification Technology, 193, 184-192. doi:10.1016/j.seppur.2017.10.067 es_ES
dc.description.references Ghalloussi, R., Chaabane, L., Larchet, C., Dammak, L., & Grande, D. (2014). Structural and physicochemical investigation of ageing of ion-exchange membranes in electrodialysis for food industry. Separation and Purification Technology, 123, 229-234. doi:10.1016/j.seppur.2013.12.020 es_ES
dc.description.references Rodrigues, M. A. S., Korzenovski, C., Gondran, E., Bernardes, A. M., & Ferreira, J. Z. (2006). Evaluation of changes on ion-selective membranes in contact with zinc-cyanide complexes. Journal of Membrane Science, 279(1-2), 140-147. doi:10.1016/j.memsci.2005.11.045 es_ES
dc.description.references Garcia-Vasquez, W., Dammak, L., Larchet, C., Nikonenko, V., & Grande, D. (2016). Effects of acid–base cleaning procedure on structure and properties of anion-exchange membranes used in electrodialysis. Journal of Membrane Science, 507, 12-23. doi:10.1016/j.memsci.2016.02.006 es_ES
dc.description.references Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions. Journal of Membrane Science, 466, 45-57. doi:10.1016/j.memsci.2014.04.033 es_ES
dc.description.references Sata, T., Tsujimoto, M., Yamaguchi, T., & Matsusaki, K. (1996). Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature. Journal of Membrane Science, 112(2), 161-170. doi:10.1016/0376-7388(95)00292-8 es_ES
dc.description.references Merle, G., Wessling, M., & Nijmeijer, K. (2011). Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377(1-2), 1-35. doi:10.1016/j.memsci.2011.04.043 es_ES
dc.description.references Couture, G., Alaaeddine, A., Boschet, F., & Ameduri, B. (2011). Polymeric materials as anion-exchange membranes for alkaline fuel cells. Progress in Polymer Science, 36(11), 1521-1557. doi:10.1016/j.progpolymsci.2011.04.004 es_ES
dc.description.references Nagarale, R. K., Gohil, G. S., & Shahi, V. K. (2006). Recent developments on ion-exchange membranes and electro-membrane processes. Advances in Colloid and Interface Science, 119(2-3), 97-130. doi:10.1016/j.cis.2005.09.005 es_ES
dc.description.references Choi, J.-H., & Moon, S.-H. (2003). Structural change of ion-exchange membrane surfaces under high electric fields and its effects on membrane properties. Journal of Colloid and Interface Science, 265(1), 93-100. doi:10.1016/s0021-9797(03)00136-x es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014 es_ES
dc.description.references Ibanez, R., Stamatialis, D. ., & Wessling, M. (2004). Role of membrane surface in concentration polarization at cation exchange membranes. Journal of Membrane Science, 239(1), 119-128. doi:10.1016/j.memsci.2003.12.032 es_ES
dc.description.references Ghalloussi, R., Garcia-Vasquez, W., Chaabane, L., Dammak, L., Larchet, C., Deabate, S. V., … Grande, D. (2013). Ageing of ion-exchange membranes in electrodialysis: A structural and physicochemical investigation. Journal of Membrane Science, 436, 68-78. doi:10.1016/j.memsci.2013.02.011 es_ES
dc.description.references Gil, V. V., Andreeva, M. A., Jansezian, L., Han, J., Pismenskaya, N. D., Nikonenko, V. V., … Dammak, L. (2018). Impact of heterogeneous cation-exchange membrane surface modification on chronopotentiometric and current–voltage characteristics in NaCl, CaCl2 and MgCl2 solutions. Electrochimica Acta, 281, 472-485. doi:10.1016/j.electacta.2018.05.195 es_ES
dc.description.references Andreeva, M. A., Gil, V. V., Pismenskaya, N. D., Dammak, L., Kononenko, N. A., Larchet, C., … Nikonenko, V. V. (2018). Mitigation of membrane scaling in electrodialysis by electroconvection enhancement, pH adjustment and pulsed electric field application. Journal of Membrane Science, 549, 129-140. doi:10.1016/j.memsci.2017.12.005 es_ES
dc.description.references Pismenskaia, N., Sistat, P., Huguet, P., Nikonenko, V., & Pourcelly, G. (2004). Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. Journal of Membrane Science, 228(1), 65-76. doi:10.1016/j.memsci.2003.09.012 es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2013). Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. Journal of Membrane Science, 443, 181-192. doi:10.1016/j.memsci.2013.04.058 es_ES
dc.description.references Belova, E., Lopatkova, G., Pismenskaya, N., Nikonenko, V., & Larchet, C. (2006). Role of water splitting in development of electroconvection in ion-exchange membrane systems. Desalination, 199(1-3), 59-61. doi:10.1016/j.desal.2006.03.142 es_ES
dc.description.references Kuć, M., Cieślik-Boczula, K., Świątek, P., Jaszczyszyn, A., Gąsiorowski, K., & Malinka, W. (2015). FTIR-ATR study of the influence of the pyrimidine analog of fluphenazine on the chain-melting phase transition of sphingomyelin membranes. Chemical Physics, 458, 9-17. doi:10.1016/j.chemphys.2015.06.010 es_ES
dc.description.references Kołodyńska, D., Hubicki, Z., & Pasieczna-Patkowska, S. (2009). FT-IR/PAS Studies of Cu(II)-EDTA Complexes Sorption οn the Chelating Ion Exchangers. Acta Physica Polonica A, 116(3), 340-343. doi:10.12693/aphyspola.116.340 es_ES
dc.description.references Sawyer, D. T., & McKinnie, J. M. (1960). Properties and Infrared Spectra of Ethylenediaminetetraacetic Acid Complexes. III. Chelates of Higher Valent Ions. Journal of the American Chemical Society, 82(16), 4191-4196. doi:10.1021/ja01501a019 es_ES
dc.description.references Cheng, J., Yang, X., Dong, L., Yuan, Z., Wang, W., Wu, S., … Wang, H. (2017). Effective nondestructive evaluations on UHMWPE/Recycled-PA6 blends using FTIR imaging and dynamic mechanical analysis. Polymer Testing, 59, 371-376. doi:10.1016/j.polymertesting.2017.02.021 es_ES
dc.description.references Grochowicz, M., & Kierys, A. (2017). TG/DSC/FTIR studies on the oxidative decomposition of polymer-silica composites loaded with sodium ibuprofen. Polymer Degradation and Stability, 138, 151-160. doi:10.1016/j.polymdegradstab.2017.03.007 es_ES
dc.description.references Esteban, M. F. G., Serrano, R. V., & Vilchez, F. G. (1987). Synthesis and vibrational study of some polydentate ligands. Spectrochimica Acta Part A: Molecular Spectroscopy, 43(8), 1039-1043. doi:10.1016/0584-8539(87)80176-9 es_ES
dc.description.references Hosakun, Y., Halász, K., Horváth, M., Csóka, L., & Djoković, V. (2017). ATR-FTIR study of the interaction of CO 2 with bacterial cellulose-based membranes. Chemical Engineering Journal, 324, 83-92. doi:10.1016/j.cej.2017.05.029 es_ES
dc.description.references Lanigan, K. C., & Pidsosny, K. (2007). Reflectance FTIR spectroscopic analysis of metal complexation to EDTA and EDDS. Vibrational Spectroscopy, 45(1), 2-9. doi:10.1016/j.vibspec.2007.03.003 es_ES
dc.description.references Garcia-Vasquez, W., Ghalloussi, R., Dammak, L., Larchet, C., Nikonenko, V., & Grande, D. (2014). Structure and properties of heterogeneous and homogeneous ion-exchange membranes subjected to ageing in sodium hypochlorite. Journal of Membrane Science, 452, 104-116. doi:10.1016/j.memsci.2013.10.035 es_ES
dc.description.references Caprarescu, S., Radu, A.-L., Purcar, V., Ianchis, R., Sarbu, A., Ghiurea, M., … Ebrasu, D.-I. (2015). Adsorbents/ion exchangers-PVA blend membranes: Preparation, characterization and performance for the removal of Zn2+ by electrodialysis. Applied Surface Science, 329, 65-75. doi:10.1016/j.apsusc.2014.12.128 es_ES
dc.description.references Caprarescu, S., Corobea, M. C., Purcar, V., Spataru, C. I., Ianchis, R., Vasilievici, G., & Vuluga, Z. (2015). San copolymer membranes with ion exchangers for Cu(II) removal from synthetic wastewater by electrodialysis. Journal of Environmental Sciences, 35, 27-37. doi:10.1016/j.jes.2015.02.005 es_ES
dc.description.references Hébert, P., Le Rille, A., Zheng, W. ., & Tadjeddine, A. (1998). Vibrational spectroscopic study of the adsorption of pyridine at the Au(111)-electrolyte interface by in situ difference frequency generation. Journal of Electroanalytical Chemistry, 447(1-2), 5-9. doi:10.1016/s0022-0728(98)00035-7 es_ES
dc.description.references Nikonenko, V. V., Kovalenko, A. V., Urtenov, M. K., Pismenskaya, N. D., Han, J., Sistat, P., & Pourcelly, G. (2014). Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination, 342, 85-106. doi:10.1016/j.desal.2014.01.008 es_ES
dc.description.references Amado, F. D. R., Rodrigues, M. A. S., Morisso, F. D. P., Bernardes, A. M., Ferreira, J. Z., & Ferreira, C. A. (2008). High-impact polystyrene/polyaniline membranes for acid solution treatment by electrodialysis: Preparation, evaluation, and chemical calculation. Journal of Colloid and Interface Science, 320(1), 52-61. doi:10.1016/j.jcis.2007.11.054 es_ES
dc.description.references Benavente, L., Coetsier, C., Venault, A., Chang, Y., Causserand, C., Bacchin, P., & Aimar, P. (2016). FTIR mapping as a simple and powerful approach to study membrane coating and fouling. Journal of Membrane Science, 520, 477-489. doi:10.1016/j.memsci.2016.07.061 es_ES
dc.description.references Wang, C., Bai, X., Liu, S., & Liu, L. (2004). Synthesis of cobalt-aluminum spinels via EDTA chelating precursors. Journal of Materials Science, 39(20), 6191-6201. doi:10.1023/b:jmsc.0000043586.66653.de es_ES
dc.description.references Wu, K. ., Wang, Y. ., & Hwu, W. . (2003). FTIR and TGA studies of poly(4-vinylpyridine-co-divinylbenzene)–Cu(II) complex. Polymer Degradation and Stability, 79(2), 195-200. doi:10.1016/s0141-3910(02)00261-6 es_ES
dc.description.references Mitic, Ž., Cakic, M., & Nikolic, G. (2010). Fourier-Transform IR spectroscopic investigations of Cobalt(II)–dextran complexes by using D2O isotopic exchange. Spectroscopy, 24(3-4), 269-275. doi:10.1155/2010/712460 es_ES
dc.description.references Xia, Q., Zhao, X. J., Chen, S. J., Ma, W. Z., Zhang, J., & Wang, X. L. (2010). Effect of solution-blended poly(styrene-co-acrylonitrile) copolymer on crystallization of poly(vinylidene fluoride). Express Polymer Letters, 4(5), 284-291. doi:10.3144/expresspolymlett.2010.36 es_ES
dc.description.references KOMKOVA, E., STAMATIALIS, D., STRATHMANN, H., & WESSLING, M. (2004). Anion-exchange membranes containing diamines: preparation and stability in alkaline solution. Journal of Membrane Science, 244(1-2), 25-34. doi:10.1016/j.memsci.2004.06.026 es_ES
dc.description.references Dammak, L., Larchet, C., & Grande, D. (2009). Ageing of ion-exchange membranes in oxidant solutions. Separation and Purification Technology, 69(1), 43-47. doi:10.1016/j.seppur.2009.06.016 es_ES
dc.description.references Bulejko, P., Stránská, E., & Weinertová, K. (2016). Properties and structure of heterogeneous ion-exchange membranes after exposure to chemical agents. Journal of Solid State Electrochemistry, 21(1), 111-124. doi:10.1007/s10008-016-3341-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem