- -

Multigene Engineering by GoldenBraid Cloning: From Plants to Filamentous Fungi and Beyond

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multigene Engineering by GoldenBraid Cloning: From Plants to Filamentous Fungi and Beyond

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vázquez-Vilar, Marta es_ES
dc.contributor.author Gandía, Mónica es_ES
dc.contributor.author García-Carpintero, Victor es_ES
dc.contributor.author Marqués, Eric es_ES
dc.contributor.author Sarrion-Perdigones, Alejandro es_ES
dc.contributor.author Yenush, Lynne es_ES
dc.contributor.author Polaina, Julio es_ES
dc.contributor.author Manzanares, Paloma es_ES
dc.contributor.author Marcos, Jose F. es_ES
dc.contributor.author Orzáez Calatayud, Diego Vicente es_ES
dc.date.accessioned 2021-05-14T03:31:41Z
dc.date.available 2021-05-14T03:31:41Z
dc.date.issued 2020-03-09 es_ES
dc.identifier.issn 1934-3639 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166341
dc.description This is the peer reviewed version of the following article: Vazquez-Vilar, M., Gandía, M., García-Carpintero, V., Marqués, E., Sarrion-Perdigones, A., Yenush, L., Polaina, J., Manzanares, P., Marcos, J. F., & Orzaez, D. (2020). Multigene engineering by goldenbraid cloning: from plants to filamentous fungi and beyond. Current Protocols in Molecular Biology, 130, e116, doi: 10.1002/cpmb.116, which has been published in final form at https://doi.org/10.1002/cpmb.116. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Many synthetic biologists have adopted methods based on Type IIS restriction enzymes and Golden Gate technology in their cloning procedures, as these enable the combinatorial assembly of modular elements in a very efficient way following standard rules. GoldenBraid (GB) is a Golden Gate¿based modular cloning system that, in addition, facilitates the engineering of large multigene constructs and the exchange of DNA parts as result of its iterative cloning scheme. GB was initially developed specifically for plant synthetic biology, and it has been subsequently extended and adapted to other organisms such as Saccharomyces cerevisiae, filamentous fungi, and human cells by incorporating a number of host¿specific features into its basic scheme. Here we describe the general GB cloning procedure and provide detailed protocols for its adaptation to filamentous fungi¿a GB variant known as FungalBraid. The assembly of a cassette for gene disruption by homologous recombination, a fungal¿specific extension of the GB utility, is also shown. Development of FungalBraid was relatively straightforward, as both plants and fungi can be engineered using the same binary plasmids via Agrobacterium¿mediated transformation. We also describe the use of a set of web¿based tools available at the GB website that assist users in all cloning procedures. The availability of plant and fungal versions of GB will facilitate genetic engineering in these industrially relevant organisms. es_ES
dc.description.sponsorship This article is dedicated to the memory of our friend and colleague Dr. Alejandro Sarrion-Perdigones, an early developer of GoldenBraid. We acknowledge the excellent technical assistance provided by Marisol Gascón (IBMCP, Valencia, Spain) with the fluorescent images. This work was funded by Grant BIO2013- 42193 and Grant BIO2016-78601-R, Plan Nacional I+D, Spanish Ministry of Economy and Competitiveness, RTI2018-101115-B-C21 from the Ministerio de Ciencia, Innovación y Universidades (Spain) (MICINN/FEDER Funds), and PROMETEO/ 2018/066 from Conselleria d'Educació (Generalitat Valenciana, Comunitat Valenciana, Spain) and SUSPHIRE PCI2018- 092893-ERA CoBioTech (109) (MCIU/FEDER). es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Current Protocols in Molecular Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Agrobacterium-mediated transformation es_ES
dc.subject FungalBraid es_ES
dc.subject Golden-Braid es_ES
dc.subject Modular cloning es_ES
dc.subject Synthetic biology es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Multigene Engineering by GoldenBraid Cloning: From Plants to Filamentous Fungi and Beyond es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cpmb.116 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2013-42193-R/ES/GREEN SWITCHES: DISEÑO DE CIRCUITOS GENETICOS ARTIFICIALES PARA LA PRODUCCION DE PROTEINAS RECOMBINANTES Y EL ENRIQUECIMIENTO NUTRICIONAL DE PLANTAS SOLANACEAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2016-78601-R/ES/DISEÑO DE CIRCUITOS GENICOS SINTETICOS Y ORTOGONALES PARA PLANTAS MEDIANTE EL USO DE FACTORES PROGRAMABLES DE UNION A DNA BASADOS EN LA ARQUITECTURA CRISPR-CAS9./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PCI2018-092893/ES/BIOPRODUCCION SOSTENIBLE DE FEROMONAS DE INSECTOS PARA CONTROL DE PLAGAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101115-B-C21/ES/PROTEINAS ANTIFUNGICAS DE HONGOS: DESDE LOS HONGOS A LAS PLANTAS Y MAS ALLA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F066/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Vázquez-Vilar, M.; Gandía, M.; García-Carpintero, V.; Marqués, E.; Sarrion-Perdigones, A.; Yenush, L.; Polaina, J.... (2020). Multigene Engineering by GoldenBraid Cloning: From Plants to Filamentous Fungi and Beyond. Current Protocols in Molecular Biology. 130(1):1-31. https://doi.org/10.1002/cpmb.116 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cpmb.116 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 31 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 130 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 32150346 es_ES
dc.relation.pasarela S\427152 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Bernabé‐Orts, J. M., Casas‐Rodrigo, I., Minguet, E. G., Landolfi, V., Garcia‐Carpintero, V., Gianoglio, S., … Orzaez, D. (2019). Assessment of Cas12a‐mediated gene editing efficiency in plants. Plant Biotechnology Journal, 17(10), 1971-1984. doi:10.1111/pbi.13113 es_ES
dc.description.references Ballester, A.-R., Marcet-Houben, M., Levin, E., Sela, N., Selma-Lázaro, C., Carmona, L., … Gabaldón, T. (2015). Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity. Molecular Plant-Microbe Interactions®, 28(3), 232-248. doi:10.1094/mpmi-09-14-0261-fi es_ES
dc.description.references Khang, C. H., Park, S.-Y., Lee, Y.-H., & Kang, S. (2005). A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genetics and Biology, 42(6), 483-492. doi:10.1016/j.fgb.2005.03.004 es_ES
dc.description.references Chen, C., Liu, J., Duan, C., Pan, Y., & Liu, G. (2020). Improvement of the CRISPR-Cas9 mediated gene disruption and large DNA fragment deletion based on a chimeric promoter in Acremonium chrysogenum. Fungal Genetics and Biology, 134, 103279. doi:10.1016/j.fgb.2019.103279 es_ES
dc.description.references Bai Flagfeldt, D., Siewers, V., Huang, L., & Nielsen, J. (2009). Characterization of chromosomal integration sites for heterologous gene expression inSaccharomyces cerevisiae. Yeast, 26(10), 545-551. doi:10.1002/yea.1705 es_ES
dc.description.references Fräbel, S., Wagner, B., Krischke, M., Schmidts, V., Thiele, C. M., Staniek, A., & Warzecha, H. (2018). Engineering of new-to-nature halogenated indigo precursors in plants. Metabolic Engineering, 46, 20-27. doi:10.1016/j.ymben.2018.02.003 es_ES
dc.description.references Fresquet-Corrales, S., Roque, E., Sarrión-Perdigones, A., Rochina, M., López-Gresa, M. P., Díaz-Mula, H. M., … Cañas, L. A. (2017). Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp. PLOS ONE, 12(9), e0184839. doi:10.1371/journal.pone.0184839 es_ES
dc.description.references Garrigues, S., Gandía, M., & Marcos, J. F. (2015). Occurrence and function of fungal antifungal proteins: a case study of the citrus postharvest pathogen Penicillium digitatum. Applied Microbiology and Biotechnology, 100(5), 2243-2256. doi:10.1007/s00253-015-7110-3 es_ES
dc.description.references Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343-345. doi:10.1038/nmeth.1318 es_ES
dc.description.references Gurgel, I. L. da S., Jorge, K. T. de O. S., Malacco, N. L. S. de O., Souza, J. A. M., Rocha, M. C., Fernandes, M. F., … Soriani, F. M. (2019). The Aspergillus fumigatus Mucin MsbA Regulates the Cell Wall Integrity Pathway and Controls Recognition of the Fungus by the Immune System. mSphere, 4(3). doi:10.1128/msphere.00350-19 es_ES
dc.description.references Hernanz-Koers, M., Gandía, M., Garrigues, S., Manzanares, P., Yenush, L., Orzaez, D., & Marcos, J. F. (2018). FungalBraid: A GoldenBraid-based modular cloning platform for the assembly and exchange of DNA elements tailored to fungal synthetic biology. Fungal Genetics and Biology, 116, 51-61. doi:10.1016/j.fgb.2018.04.010 es_ES
dc.description.references Juarez, P., Huet-Trujillo, E., Sarrion-Perdigones, A., Falconi, E., Granell, A., & Orzaez, D. (2013). Combinatorial Analysis of Secretory Immunoglobulin A (sIgA) Expression in Plants. International Journal of Molecular Sciences, 14(3), 6205-6222. doi:10.3390/ijms14036205 es_ES
dc.description.references Kramer, M. F., & Coen, D. M. (2001). Enzymatic Amplification of DNA by PCR: Standard Procedures and Optimization. Current Protocols in Molecular Biology. doi:10.1002/0471142727.mb1501s56 es_ES
dc.description.references Marcet-Houben, M., Ballester, A.-R., de la Fuente, B., Harries, E., Marcos, J. F., González-Candelas, L., & Gabaldón, T. (2012). Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genomics, 13(1). doi:10.1186/1471-2164-13-646 es_ES
dc.description.references Michielse, C. B., J Hooykaas, P. J., J J van den Hondel, C. A. M., & J Ram, A. F. (2008). Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nature Protocols, 3(10), 1671-1678. doi:10.1038/nprot.2008.154 es_ES
dc.description.references Müller, K. M., & Arndt, K. M. (2011). Standardization in Synthetic Biology. Synthetic Gene Networks, 23-43. doi:10.1007/978-1-61779-412-4_2 es_ES
dc.description.references Patron, N. J., Orzaez, D., Marillonnet, S., Warzecha, H., Matthewman, C., Youles, M., … Rogers, C. (2015). Standards for plant synthetic biology: a common syntax for exchange of DNA parts. New Phytologist, 208(1), 13-19. doi:10.1111/nph.13532 es_ES
dc.description.references Pérez-González, A., Kniewel, R., Veldhuizen, M., Verma, H. K., Navarro-Rodríguez, M., Rubio, L. M., & Caro, E. (2017). Adaptation of the GoldenBraid modular cloning system and creation of a toolkit for the expression of heterologous proteins in yeast mitochondria. BMC Biotechnology, 17(1). doi:10.1186/s12896-017-0393-y es_ES
dc.description.references Pérez-Nadales, E., & Di Pietro, A. (2011). The Membrane Mucin Msb2 Regulates Invasive Growth and Plant Infection in Fusarium oxysporum  . The Plant Cell, 23(3), 1171-1185. doi:10.1105/tpc.110.075093 es_ES
dc.description.references Salazar-Cerezo, S., Kun, R. S., de Vries, R. P., & Garrigues, S. (2020). CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer. Enzyme and Microbial Technology, 133, 109463. doi:10.1016/j.enzmictec.2019.109463 es_ES
dc.description.references Sarrion-Perdigones, A., Chang, L., Gonzalez, Y., Gallego-Flores, T., Young, D. W., & Venken, K. J. T. (2019). Examining multiple cellular pathways at once using multiplex hextuple luciferase assaying. Nature Communications, 10(1). doi:10.1038/s41467-019-13651-y es_ES
dc.description.references Sarrion-Perdigones, A., Falconi, E. E., Zandalinas, S. I., Juárez, P., Fernández-del-Carmen, A., Granell, A., & Orzaez, D. (2011). GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLoS ONE, 6(7), e21622. doi:10.1371/journal.pone.0021622 es_ES
dc.description.references Sarrion-Perdigones, A., Vazquez-Vilar, M., Palaci, J., Castelijns, B., Forment, J., Ziarsolo, P., … Orzaez, D. (2013). GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. PLANT PHYSIOLOGY, 162(3), 1618-1631. doi:10.1104/pp.113.217661 es_ES
dc.description.references Selma, S., Bernabé‐Orts, J. M., Vazquez‐Vilar, M., Diego‐Martin, B., Ajenjo, M., Garcia‐Carpintero, V., … Orzaez, D. (2019). Strong gene activation in plants with genome‐wide specificity using a new orthogonal CRISPR /Cas9‐based programmable transcriptional activator. Plant Biotechnology Journal, 17(9), 1703-1705. doi:10.1111/pbi.13138 es_ES
dc.description.references Shendure, J. A., Porreca, G. J., Church, G. M., Gardner, A. F., Hendrickson, C. L., Kieleczawa, J., & Slatko, B. E. (2011). Overview of DNA Sequencing Strategies. Current Protocols in Molecular Biology, 96(1). doi:10.1002/0471142727.mb0701s96 es_ES
dc.description.references Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., … Oakley, B. R. (2006). Fusion PCR and gene targeting in Aspergillus nidulans. Nature Protocols, 1(6), 3111-3120. doi:10.1038/nprot.2006.405 es_ES
dc.description.references Vafaee, Y., Staniek, A., Mancheno-Solano, M., & Warzecha, H. (2014). A Modular Cloning Toolbox for the Generation of Chloroplast Transformation Vectors. PLoS ONE, 9(10), e110222. doi:10.1371/journal.pone.0110222 es_ES
dc.description.references Vazquez-Vilar, M., Bernabé-Orts, J. M., Fernandez-del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2016). A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods, 12(1). doi:10.1186/s13007-016-0101-2 es_ES
dc.description.references Villiers, B. R. M., Stein, V., & Hollfelder, F. (2009). USER friendly DNA recombination (USERec): a simple and flexible near homology-independent method for gene library construction. Protein Engineering, Design and Selection, 23(1), 1-8. doi:10.1093/protein/gzp063 es_ES
dc.description.references Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLoS ONE, 6(2), e16765. doi:10.1371/journal.pone.0016765 es_ES
dc.description.references Sarrion‐Perdigones et al. (2013). See above. es_ES
dc.description.references Hernanz‐Koersetal. (2018). See above. es_ES
dc.description.references https://gbcloning.upv.es/ es_ES
dc.description.references https://benchling.com es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem