- -

A fuzzy logic map-based knock control for spark ignition engines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A fuzzy logic map-based knock control for spark ignition engines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pla Moreno, Benjamín es_ES
dc.contributor.author Bares-Moreno, Pau es_ES
dc.contributor.author Jimenez, Irina Ayelen es_ES
dc.contributor.author Guardiola, Carlos es_ES
dc.contributor.author Zhang, Y. es_ES
dc.contributor.author Shen, Tielong es_ES
dc.date.accessioned 2021-05-20T03:34:42Z
dc.date.available 2021-05-20T03:34:42Z
dc.date.issued 2020-12-15 es_ES
dc.identifier.issn 0306-2619 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166541
dc.description.abstract [EN] Knock control represents one of the most critical aspects to reach optimal thermal efficiency in spark ignition engines, and its research is crucially important because it determines thermal efficiency, engine durability, and power density, as well as noise and emission performance. In this paper, a spark advance control based on a map learning technique is combined with a knock estimator to maximize the engine efficiency while keeping the knock probability below a desired limit. The proposed controller is experimentally validated on a production spark ignition gasoline engine test bench, and compared with a conventional spark advance controller in both, steady and transient conditions. From experimental results, a benefit in terms of thermal efficiency, control stability and engine security are achieved. The results show that the proposed method is capable of regulating the knock probability to a target percentage with low spark advance and thermal efficiency dispersion than the conventional controller. es_ES
dc.description.sponsorship Irina A. Jimenez received a funding through the grant GRISOLIAP/2018/132 from the Generalitat Valenciana and the European Social Fund. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Combustion control es_ES
dc.subject Spark advance es_ES
dc.subject Knock es_ES
dc.subject Map learning es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title A fuzzy logic map-based knock control for spark ignition engines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apenergy.2020.116036 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F132/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Pla Moreno, B.; Bares-Moreno, P.; Jimenez, IA.; Guardiola, C.; Zhang, Y.; Shen, T. (2020). A fuzzy logic map-based knock control for spark ignition engines. Applied Energy. 280:1-8. https://doi.org/10.1016/j.apenergy.2020.116036 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apenergy.2020.116036 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 280 es_ES
dc.relation.pasarela S\435848 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Liu, H., Wang, C., Yu, Y., Xu, H., & Ma, X. (2020). An experimental study on particle evolution in the exhaust gas of a direct injection SI engine. Applied Energy, 260, 114220. doi:10.1016/j.apenergy.2019.114220 es_ES
dc.description.references Chen, C., Pal, P., Ameen, M., Feng, D., & Wei, H. (2020). Large-eddy simulation study on cycle-to-cycle variation of knocking combustion in a spark-ignition engine. Applied Energy, 261, 114447. doi:10.1016/j.apenergy.2019.114447 es_ES
dc.description.references Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., & Song, M. (2012). The engine knock analysis – An overview. Applied Energy, 92, 628-636. doi:10.1016/j.apenergy.2011.11.079 es_ES
dc.description.references Shen, X., & Shen, T. (2017). Real-time statistical learning-based stochastic knock limit control for spark-ignition engines. Applied Thermal Engineering, 127, 1518-1529. doi:10.1016/j.applthermaleng.2017.08.150 es_ES
dc.description.references Pipitone, E. (2008). A Comparison Between Combustion Phase Indicators for Optimal Spark Timing. Journal of Engineering for Gas Turbines and Power, 130(5). doi:10.1115/1.2939012 es_ES
dc.description.references Corti, E., Forte, C., Mancini, G., & Moro, D. (2014). Automatic Combustion Phase Calibration With Extremum Seeking Approach. Journal of Engineering for Gas Turbines and Power, 136(9). doi:10.1115/1.4027188 es_ES
dc.description.references Shen, T., Kang, M., Gao, J., Zhang, J., & Wu, Y. (2017). Challenges and solutions in automotive powertrain systems. Journal of Control and Decision, 5(1), 61-93. doi:10.1080/23307706.2017.1399092 es_ES
dc.description.references Shu, G., Pan, J., & Wei, H. (2013). Analysis of onset and severity of knock in SI engine based on in-cylinder pressure oscillations. Applied Thermal Engineering, 51(1-2), 1297-1306. doi:10.1016/j.applthermaleng.2012.11.039 es_ES
dc.description.references Bares, P., Selmanaj, D., Guardiola, C., & Onder, C. (2018). Knock probability estimation through an in-cylinder temperature model with exogenous noise. Mechanical Systems and Signal Processing, 98, 756-769. doi:10.1016/j.ymssp.2017.05.033 es_ES
dc.description.references Peyton Jones, J. C., Frey, J., & Shayestehmanesh, S. (2017). Stochastic Simulation and Performance Analysis of Classical Knock Control Algorithms. IEEE Transactions on Control Systems Technology, 25(4), 1307-1317. doi:10.1109/tcst.2016.2603065 es_ES
dc.description.references Jones, J. C. P., Frey, J., Muske, K. R., & Scholl, D. J. (2010). A cumulative-summation-based stochastic knock controller. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(7), 969-983. doi:10.1243/09544070jauto1505 es_ES
dc.description.references Jones, J. C. P., Spelina, J. M., & Frey, J. (2013). An Optimal CumSum-based Knock Controller. IFAC Proceedings Volumes, 46(21), 372-377. doi:10.3182/20130904-4-jp-2042.00063 es_ES
dc.description.references Peyton Jones, J. C., Shayestehmanesh, S., & Frey, J. (2016). A dual-threshold knock controller. International Journal of Engine Research, 18(8), 837-846. doi:10.1177/1468087416676756 es_ES
dc.description.references Shayestehmanesh, S., Peyton Jones, J. C., & Frey, J. (2017). Computing the closed-loop characteristics of a generalized multi-threshold knock controller. International Journal of Engine Research, 19(9), 952-962. doi:10.1177/1468087417736693 es_ES
dc.description.references Zhao, K., Wu, Y., & Shen, T. (2018). Stochastic Knock Control with Beta Distribution Learning for Gasoline Engines. IFAC-PapersOnLine, 51(31), 125-130. doi:10.1016/j.ifacol.2018.10.023 es_ES
dc.description.references Zhao, K., & Shen, T. (2019). Normal-gamma distribution–based stochastic knock probability control scheme for spark-ignition engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(7), 1986-2000. doi:10.1177/0954407019872649 es_ES
dc.description.references Shen, X., Zhang, Y., Shen, T., & Khajorntraidet, C. (2017). Spark advance self-optimization with knock probability threshold for lean-burn operation mode of SI engine. Energy, 122, 1-10. doi:10.1016/j.energy.2017.01.065 es_ES
dc.description.references Thomasson, A., Shi, H., Lindell, T., Eriksson, L., Shen, T., & Peyton Jones, J. C. (2016). Experimental Validation of a Likelihood-Based Stochastic Knock Controller. IEEE Transactions on Control Systems Technology, 24(4), 1407-1418. doi:10.1109/tcst.2015.2483566 es_ES
dc.description.references Selmanaj, D., Panzani, G., van Dooren, S., Rosgren, J., & Onder, C. (2019). Adaptive and Unconventional Strategies for Engine Knock Control. IEEE Transactions on Control Systems Technology, 27(4), 1838-1845. doi:10.1109/tcst.2018.2827898 es_ES
dc.description.references Peyton Jones, J. C., Shayestehmanesh, S., & Frey, J. (2017). Closed loop statistical performance analysis of N-K knock controllers. Mechanical Systems and Signal Processing, 94, 253-266. doi:10.1016/j.ymssp.2017.01.041 es_ES
dc.description.references Corti, E., & Forte, C. (2010). A Statistical Approach to Spark Advance Mapping. Journal of Engineering for Gas Turbines and Power, 132(8). doi:10.1115/1.4000294 es_ES
dc.description.references Zhang, Y., Shen, X., & Shen, T. (2018). A survey on online learning and optimization for spark advance control of SI engines. Science China Information Sciences, 61(7). doi:10.1007/s11432-017-9377-7 es_ES
dc.description.references Zhang, Y., Shen, X., Wu, Y., & Shen, T. (2019). On-board knock probability map learning–based spark advance control for combustion engines. International Journal of Engine Research, 20(10), 1073-1088. doi:10.1177/1468087419858026 es_ES
dc.description.references Peyton Jones, J. C., & Frey, J. (2015). Threshold Optimization and Performance Evaluation of a Classical Knock Controller. SAE International Journal of Engines, 8(3), 1021-1028. doi:10.4271/2015-01-0871 es_ES
dc.description.references Frey, J., Peyton Jones, J. C., & Shayestehmanesh, S. (2016). Stochastic Simulation of a CumSum Knock Controller. IFAC-PapersOnLine, 49(11), 210-216. doi:10.1016/j.ifacol.2016.08.032 es_ES
dc.description.references Guardiola, C., Pla, B., Bares, P., & Barbier, A. (2018). An analysis of the in-cylinder pressure resonance excitation in internal combustion engines. Applied Energy, 228, 1272-1279. doi:10.1016/j.apenergy.2018.06.157 es_ES
dc.description.references Guardiola, C., Pla, B., Blanco-Rodriguez, D., & Eriksson, L. (2013). A computationally efficient Kalman filter based estimator for updating look-up tables applied to NOx estimation in diesel engines. Control Engineering Practice, 21(11), 1455-1468. doi:10.1016/j.conengprac.2013.06.015 es_ES
dc.description.references Gao, J., Zhang, Y., & Shen, T. (2017). An On-Board Calibration Scheme for Map-Based Combustion Phase Control of Spark-Ignition Engines. IEEE/ASME Transactions on Mechatronics, 22(4), 1485-1496. doi:10.1109/tmech.2017.2696788 es_ES
dc.description.references Peyton Jones, J. C., Spelina, J. M., & Frey, J. (2013). Likelihood-Based Control of Engine Knock. IEEE Transactions on Control Systems Technology, 21(6), 2169-2180. doi:10.1109/tcst.2012.2229280 es_ES
dc.description.references Spelina, J. M., Peyton Jones, J. C., & Frey, J. (2014). Stochastic simulation and analysis of a classical knock controller. International Journal of Engine Research, 16(3), 461-473. doi:10.1177/1468087414551073 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem