- -

Sustainability and interoperability: An economic study on BIM implementation by a small Civil Engineering firm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainability and interoperability: An economic study on BIM implementation by a small Civil Engineering firm

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aranda Domingo, José Ángel es_ES
dc.contributor.author Martin-Dorta, Norena es_ES
dc.contributor.author Naya Sanchis, Ferran es_ES
dc.contributor.author Conesa-Pastor, Julián es_ES
dc.contributor.author Contero, Manuel es_ES
dc.date.accessioned 2021-05-22T03:32:16Z
dc.date.available 2021-05-22T03:32:16Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166660
dc.description.abstract [EN] Sustainability and interoperability are two closely related concepts. By analyzing the three fundamental facets of sustainability-economic, ecological and ethical/social-it is easier to address their connection with the concept of interoperability. This paper focuses on the economic aspect, in the field of civil engineering. In this area, due to the local nature of many of the software tools used, interoperability problems are frequent, with few studies addressing the economic impact of this, especially in small engineering firms. The main contribution of this paper is a design methodology for linear works based on the federation of building information modelling (BIM) models created with different software tools, conceived to break the interoperability issues between these applications. As an example, this methodology is applied to a mountain road widening project. A detailed economic analysis of the application of this methodology by an engineering Spanish firm reveals the important cost reductions that the integration of the software tools provides versus the prior practices. es_ES
dc.description.sponsorship The authors wish to acknowledge support from ISTRAM, CivileStudio and the engineering firm for the information provided. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject BIM es_ES
dc.subject IFC es_ES
dc.subject Linear construction design es_ES
dc.subject Retaining walls es_ES
dc.subject Parameterization es_ES
dc.subject Reinforced concrete design es_ES
dc.subject Structural calculation es_ES
dc.subject Georeferencing es_ES
dc.subject IFC federation es_ES
dc.subject Costs es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Sustainability and interoperability: An economic study on BIM implementation by a small Civil Engineering firm es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12229581 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Aranda Domingo, JÁ.; Martin-Dorta, N.; Naya Sanchis, F.; Conesa-Pastor, J.; Contero, M. (2020). Sustainability and interoperability: An economic study on BIM implementation by a small Civil Engineering firm. Sustainability. 12(22):1-16. https://doi.org/10.3390/su12229581 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12229581 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 22 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\427143 es_ES
dc.description.references Grilo, A., & Jardim-Goncalves, R. (2010). Value proposition on interoperability of BIM and collaborative working environments. Automation in Construction, 19(5), 522-530. doi:10.1016/j.autcon.2009.11.003 es_ES
dc.description.references Bynum, P., Issa, R. R. A., & Olbina, S. (2013). Building Information Modeling in Support of Sustainable Design and Construction. Journal of Construction Engineering and Management, 139(1), 24-34. doi:10.1061/(asce)co.1943-7862.0000560 es_ES
dc.description.references BuildingSMART Internationalhttps://www.buildingsmart.org/ es_ES
dc.description.references Modelos digitales del terreno: Introducción y aplicaciones a las ciencias ambientales. Oviedo Univ. Oviedo 1994, 118http://www.etsimo.uniovi.es/~feli es_ES
dc.description.references Baltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 83-94. doi:10.1016/s0924-2716(99)00014-3 es_ES
dc.description.references Hirpa, D., Hare, W., Lucet, Y., Pushak, Y., & Tesfamariam, S. (2016). A bi-objective optimization framework for three-dimensional road alignment design. Transportation Research Part C: Emerging Technologies, 65, 61-78. doi:10.1016/j.trc.2016.01.016 es_ES
dc.description.references Yepes, V., Alcala, J., Perea, C., & González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821-830. doi:10.1016/j.engstruct.2007.05.023 es_ES
dc.description.references Nehate, G., & Rys, M. (2006). 3D Calculation of Stopping-Sight Distance from GPS Data. Journal of Transportation Engineering, 132(9), 691-698. doi:10.1061/(asce)0733-947x(2006)132:9(691) es_ES
dc.description.references Borga, M., Tonelli, F., & Selleroni, J. (2004). A physically based model of the effects of forest roads on slope stability. Water Resources Research, 40(12). doi:10.1029/2004wr003238 es_ES
dc.description.references Vanmarcke, E. H. (1977). Reliability of Earth Slopes. Journal of the Geotechnical Engineering Division, 103(11), 1247-1265. doi:10.1061/ajgeb6.0000518 es_ES
dc.description.references Istram Softwarehttps://www.istram.net es_ES
dc.description.references CivileStudio Softwarehttps://www.civilestudio.com es_ES
dc.description.references Bates, P. ., & De Roo, A. P. . (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236(1-2), 54-77. doi:10.1016/s0022-1694(00)00278-x es_ES
dc.description.references Bryde, D., Broquetas, M., & Volm, J. M. (2013). The project benefits of Building Information Modelling (BIM). International Journal of Project Management, 31(7), 971-980. doi:10.1016/j.ijproman.2012.12.001 es_ES
dc.description.references Ghaffarianhoseini, A., Tookey, J., Ghaffarianhoseini, A., Naismith, N., Azhar, S., Efimova, O., & Raahemifar, K. (2017). Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renewable and Sustainable Energy Reviews, 75, 1046-1053. doi:10.1016/j.rser.2016.11.083 es_ES
dc.description.references Love, P. E. D., & Matthews, J. (2019). The ‘how’ of benefits management for digital technology: From engineering to asset management. Automation in Construction, 107, 102930. doi:10.1016/j.autcon.2019.102930 es_ES
dc.description.references Shin, M., Lee, H., & Kim, H. (2018). Benefit–Cost Analysis of Building Information Modeling (BIM) in a Railway Site. Sustainability, 10(11), 4303. doi:10.3390/su10114303 es_ES
dc.description.references Barlish, K., & Sullivan, K. (2012). How to measure the benefits of BIM — A case study approach. Automation in Construction, 24, 149-159. doi:10.1016/j.autcon.2012.02.008 es_ES
dc.description.references Ham, N., Moon, S., Kim, J.-H., & Kim, J.-J. (2018). Economic Analysis of Design Errors in BIM-Based High-Rise Construction Projects: Case Study of Haeundae L Project. Journal of Construction Engineering and Management, 144(6), 05018006. doi:10.1061/(asce)co.1943-7862.0001498 es_ES
dc.description.references Hong, Y., Hammad, A. W. A., Akbarnezhad, A., & Arashpour, M. (2020). A neural network approach to predicting the net costs associated with BIM adoption. Automation in Construction, 119, 103306. doi:10.1016/j.autcon.2020.103306 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem