- -

Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation

Mostrar el registro completo del ítem

Alyarnezhad, S.; Marino, T.; Parsa, JB.; Galiano, F.; Ursino, C.; García Gómez, H.; Puche, M.... (2020). Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation. E-Polymers. 12(7):1-19. https://doi.org/10.3390/polym12071509

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166747

Ficheros en el ítem

Metadatos del ítem

Título: Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation
Autor: Alyarnezhad, Sabri Marino, Tiziana Parsa, Jalal Basiri Galiano, Francesco Ursino, Claudia García Gómez, Hermenegildo Puche, Marta Figoli, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] In this study, polyvinylidene fluoride (PVDF)-graphene oxide (GO) membranes were obtained by employing triethyl phosphate (TEP) as a solvent. GO nanosheets were prepared and characterized in terms of scanning and ...[+]
Palabras clave: PVDF-GO membranes , Photocatalytic membranes , Triethyl phosphate , GO nanosheets , Dye removal , Photocatalysis
Derechos de uso: Reconocimiento (by)
Fuente:
E-Polymers. (eissn: 1618-7229 )
DOI: 10.3390/polym12071509
Editorial:
Walter de Gruyter GmbH
Versión del editor: https://doi.org/10.3390/polym12071509
Agradecimientos:
The authors acknowledge the financial support from Iran Science Ministry. The authors also sincerely thank the Institute on Membrane Technology, National Research Council of Italy (ITM-CNR) for kindly collaborate.
Tipo: Artículo

References

Figoli, A., Ursino, C., Galiano, F., Di Nicolò, E., Campanelli, P., Carnevale, M. C., & Criscuoli, A. (2017). Innovative hydrophobic coating of perfluoropolyether (PFPE) on commercial hydrophilic membranes for DCMD application. Journal of Membrane Science, 522, 192-201. doi:10.1016/j.memsci.2016.08.066

Dao, V.-D., Vu, N. H., & Choi, H.-S. (2020). All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. Journal of Power Sources, 448, 227388. doi:10.1016/j.jpowsour.2019.227388

Dao, V.-D., Vu, N. H., & Yun, S. (2020). Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy, 68, 104324. doi:10.1016/j.nanoen.2019.104324 [+]
Figoli, A., Ursino, C., Galiano, F., Di Nicolò, E., Campanelli, P., Carnevale, M. C., & Criscuoli, A. (2017). Innovative hydrophobic coating of perfluoropolyether (PFPE) on commercial hydrophilic membranes for DCMD application. Journal of Membrane Science, 522, 192-201. doi:10.1016/j.memsci.2016.08.066

Dao, V.-D., Vu, N. H., & Choi, H.-S. (2020). All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. Journal of Power Sources, 448, 227388. doi:10.1016/j.jpowsour.2019.227388

Dao, V.-D., Vu, N. H., & Yun, S. (2020). Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy, 68, 104324. doi:10.1016/j.nanoen.2019.104324

Dao, V.-D., & Choi, H.-S. (2018). Carbon-Based Sunlight Absorbers in Solar-Driven Steam Generation Devices. Global Challenges, 2(2), 1700094. doi:10.1002/gch2.201700094

Pastrana-Martínez, L. M., Morales-Torres, S., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2015). Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Research, 77, 179-190. doi:10.1016/j.watres.2015.03.014

Zhang, X., Wang, D. K., & Diniz da Costa, J. C. (2014). Recent progresses on fabrication of photocatalytic membranes for water treatment. Catalysis Today, 230, 47-54. doi:10.1016/j.cattod.2013.11.019

Athanasekou, C. P., Moustakas, N. G., Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., … Falaras, P. (2015). Ceramic photocatalytic membranes for water filtration under UV and visible light. Applied Catalysis B: Environmental, 178, 12-19. doi:10.1016/j.apcatb.2014.11.021

Athanasekou, C. P., Romanos, G. E., Katsaros, F. K., Kordatos, K., Likodimos, V., & Falaras, P. (2012). Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. Journal of Membrane Science, 392-393, 192-203. doi:10.1016/j.memsci.2011.12.028

Romanos, G. E., Athanasekou, C. P., Katsaros, F. K., Kanellopoulos, N. K., Dionysiou, D. D., Likodimos, V., & Falaras, P. (2012). Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. Journal of Hazardous Materials, 211-212, 304-316. doi:10.1016/j.jhazmat.2011.09.081

Zhang, W., Dong, F., Xiong, T., & Zhang, Q. (2014). Synthesis of BiOBr–graphene and BiOBr–graphene oxide nanocomposites with enhanced visible light photocatalytic performance. Ceramics International, 40(7), 9003-9008. doi:10.1016/j.ceramint.2014.01.112

Dadvar, E., Kalantary, R. R., Ahmad Panahi, H., & Peyravi, M. (2017). Efficiency of Polymeric Membrane Graphene Oxide-TiO2for Removal of Azo Dye. Journal of Chemistry, 2017, 1-13. doi:10.1155/2017/6217987

Simone, S., Galiano, F., Faccini, M., Boerrigter, M., Chaumette, C., Drioli, E., & Figoli, A. (2017). Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment. Fibers, 5(2), 14. doi:10.3390/fib5020014

Liu, G., Han, K., Ye, H., Zhu, C., Gao, Y., Liu, Y., & Zhou, Y. (2017). Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment. Chemical Engineering Journal, 320, 74-80. doi:10.1016/j.cej.2017.03.024

Djafer, L., Ayral, A., & Ouagued, A. (2010). Robust synthesis and performance of a titania-based ultrafiltration membrane with photocatalytic properties. Separation and Purification Technology, 75(2), 198-203. doi:10.1016/j.seppur.2010.08.001

Jung, J.-T., Lee, W.-H., & Kim, J.-O. (2016). Photodegradation and permeability of conventional photocatalytic reactor and two different submerged membrane photocatalytic reactors for the removal of humic acid in water. Desalination and Water Treatment, 57(55), 26765-26772. doi:10.1080/19443994.2016.1189700

Xu, Z., Wu, T., Shi, J., Teng, K., Wang, W., Ma, M., … Fan, J. (2016). Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science, 520, 281-293. doi:10.1016/j.memsci.2016.07.060

Gao, Y., Hu, M., & Mi, B. (2014). Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance. Journal of Membrane Science, 455, 349-356. doi:10.1016/j.memsci.2014.01.011

Zhao, H., Chen, S., Quan, X., Yu, H., & Zhao, H. (2016). Integration of microfiltration and visible-light-driven photocatalysis on g-C 3 N 4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Applied Catalysis B: Environmental, 194, 134-140. doi:10.1016/j.apcatb.2016.04.042

Cruz-Ortiz, B. R., Hamilton, J. W. J., Pablos, C., Díaz-Jiménez, L., Cortés-Hernández, D. A., Sharma, P. K., … Byrne, J. A. (2017). Mechanism of photocatalytic disinfection using titania-graphene composites under UV and visible irradiation. Chemical Engineering Journal, 316, 179-186. doi:10.1016/j.cej.2017.01.094

Galiano, F., Song, X., Marino, T., Boerrigter, M., Saoncella, O., Simone, S., … Figoli, A. (2018). Novel Photocatalytic PVDF/Nano-TiO2 Hollow Fibers for Environmental Remediation. Polymers, 10(10), 1134. doi:10.3390/polym10101134

Szymański, K., Morawski, A. W., & Mozia, S. (2016). Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane. Chemical Engineering Journal, 305, 19-27. doi:10.1016/j.cej.2015.10.024

Marino, T., Blefari, S., Di Nicolò, E., & Figoli, A. (2017). A more sustainable membrane preparation using triethyl phosphate as solvent. Green Processing and Synthesis, 6(3). doi:10.1515/gps-2016-0165

Benhabiles, O., Galiano, F., Marino, T., Mahmoudi, H., Lounici, H., & Figoli, A. (2019). Preparation and Characterization of TiO2-PVDF/PMMA Blend Membranes Using an Alternative Non-Toxic Solvent for UF/MF and Photocatalytic Application. Molecules, 24(4), 724. doi:10.3390/molecules24040724

Marino, T., Russo, F., & Figoli, A. (2018). The Formation of Polyvinylidene Fluoride Membranes with Tailored Properties via Vapour/Non-Solvent Induced Phase Separation. Membranes, 8(3), 71. doi:10.3390/membranes8030071

Liu, Z., Miao, Y.-E., Liu, M., Ding, Q., Tjiu, W. W., Cui, X., & Liu, T. (2014). Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance. Journal of Colloid and Interface Science, 424, 49-55. doi:10.1016/j.jcis.2014.03.009

Athanasekou, C. P., Morales-Torres, S., Likodimos, V., Romanos, G. E., Pastrana-Martinez, L. M., Falaras, P., … Silva, A. M. T. (2014). Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light. Applied Catalysis B: Environmental, 158-159, 361-372. doi:10.1016/j.apcatb.2014.04.012

Rao, G., Zhang, Q., Zhao, H., Chen, J., & Li, Y. (2016). Novel titanium dioxide/iron (III) oxide/graphene oxide photocatalytic membrane for enhanced humic acid removal from water. Chemical Engineering Journal, 302, 633-640. doi:10.1016/j.cej.2016.05.095

Chen, W., Ye, T., Xu, H., Chen, T., Geng, N., & Gao, X. (2017). An ultrafiltration membrane with enhanced photocatalytic performance from grafted N–TiO2/graphene oxide. RSC Advances, 7(16), 9880-9887. doi:10.1039/c6ra27666k

Shao, F., Xu, C., Ji, W., Dong, H., Sun, Q., Yu, L., & Dong, L. (2017). Layer-by-layer self-assembly TiO 2 and graphene oxide on polyamide reverse osmosis membranes with improved membrane durability. Desalination, 423, 21-29. doi:10.1016/j.desal.2017.09.007

Chen, R., & Liu, H. (2011). Preparation of Cr-doped TiO2/SiO2 Photocatalysts and their Photocatalytic Properties. Journal of the Chinese Chemical Society, 58(7), 947-954. doi:10.1002/jccs.201190149

Morris, R. E., Krikanova, E., & Shadman, F. (2004). Photocatalytic membrane for removal of organic contaminants during ultra-purification of water. Clean Technologies and Environmental Policy, 6(2), 96-104. doi:10.1007/s10098-003-0198-7

Lopez, L. C., Buonomenna, M. G., Fontananova, E., Iacoviello, G., Drioli, E., d’ Agostino, R., & Favia, P. (2006). A New Generation of Catalytic Poly(vinylidene fluoride) Membranes: Coupling Plasma Treatment with Chemical Immobilization of Tungsten-Based Catalysts. Advanced Functional Materials, 16(11), 1417-1424. doi:10.1002/adfm.200500502

Méricq, J.-P., Mendret, J., Brosillon, S., & Faur, C. (2015). High performance PVDF-TiO 2 membranes for water treatment. Chemical Engineering Science, 123, 283-291. doi:10.1016/j.ces.2014.10.047

Safarpour, M., Vatanpour, V., & Khataee, A. (2016). Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination, 393, 65-78. doi:10.1016/j.desal.2015.07.003

Mahlambi, M. M., Vilakati, G. D., & Mamba, B. B. (2014). Synthesis, Characterization, and Visible Light Degradation of Rhodamine B Dye by Carbon-Covered Alumina Supported Pd-TiO2/Polysulfone Membranes. Separation Science and Technology, 49(14), 2124-2134. doi:10.1080/01496395.2014.917105

Kumar, M., Gholamvand, Z., Morrissey, A., Nolan, K., Ulbricht, M., & Lawler, J. (2016). Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO−TiO2 nanocomposite and polysulfone for humic acid removal. Journal of Membrane Science, 506, 38-49. doi:10.1016/j.memsci.2016.02.005

Zhang, X., Lang, W.-Z., Yan, X., Lou, Z.-Y., & Chen, X.-F. (2016). Influences of the structure parameters of multi-walled carbon nanotubes(MWNTs) on PVDF/PFSA/O-MWNTs hollow fiber ultrafiltration membranes. Journal of Membrane Science, 499, 179-190. doi:10.1016/j.memsci.2015.10.034

Castro-Muñoz, R., Galiano, F., de la Iglesia, Ó., Fíla, V., Téllez, C., Coronas, J., & Figoli, A. (2019). Graphene oxide – Filled polyimide membranes in pervaporative separation of azeotropic methanol–MTBE mixtures. Separation and Purification Technology, 224, 265-272. doi:10.1016/j.seppur.2019.05.034

Grasso, G., Galiano, F., Yoo, M. J., Mancuso, R., Park, H. B., Gabriele, B., … Drioli, E. (2020). Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 604, 118017. doi:10.1016/j.memsci.2020.118017

Yao, Y., Miao, S., Yu, S., Ping Ma, L., Sun, H., & Wang, S. (2012). Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent. Journal of Colloid and Interface Science, 379(1), 20-26. doi:10.1016/j.jcis.2012.04.030

Zhang, X., Cheng, C., Zhao, J., Ma, L., Sun, S., & Zhao, C. (2013). Polyethersulfone enwrapped graphene oxide porous particles for water treatment. Chemical Engineering Journal, 215-216, 72-81. doi:10.1016/j.cej.2012.11.009

Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., … Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806-4814. doi:10.1021/nn1006368

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Krishnamoorthy, K., Mohan, R., & Kim, S.-J. (2011). Graphene oxide as a photocatalytic material. Applied Physics Letters, 98(24), 244101. doi:10.1063/1.3599453

Hou, W.-C., & Wang, Y.-S. (2017). Photocatalytic Generation of H2O2 by Graphene Oxide in Organic Electron Donor-Free Condition under Sunlight. ACS Sustainable Chemistry & Engineering, 5(4), 2994-3001. doi:10.1021/acssuschemeng.6b02635

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034

Li, S., Cui, Z., Zhang, L., He, B., & Li, J. (2016). The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes. Journal of Membrane Science, 513, 1-11. doi:10.1016/j.memsci.2016.04.035

Tseng, H.-H., Zhuang, G.-L., & Su, Y.-C. (2012). The effect of blending ratio on the compatibility, morphology, thermal behavior and pure water permeation of asymmetric CAP/PVDF membranes. Desalination, 284, 269-278. doi:10.1016/j.desal.2011.09.011

Rehan, Z., Gzara, L., Khan, S., Alamry, K., El-Shahawi, M. S., Albeirutty, M., … Asiri, A. (2016). Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. Recent Patents on Nanotechnology, 10(3), 231-251. doi:10.2174/1872210510666160429145228

Mousavi, S. M., & Zadhoush, A. (2017). Investigation of the relation between viscoelastic properties of polysulfone solutions, phase inversion process and membrane morphology: The effect of solvent power. Journal of Membrane Science, 532, 47-57. doi:10.1016/j.memsci.2017.03.006

Wongchitphimon, S., Wang, R., Jiraratananon, R., Shi, L., & Loh, C. H. (2011). Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science, 369(1-2), 329-338. doi:10.1016/j.memsci.2010.12.008

Russo, F., Galiano, F., Pedace, F., Aricò, F., & Figoli, A. (2019). Dimethyl Isosorbide As a Green Solvent for Sustainable Ultrafiltration and Microfiltration Membrane Preparation. ACS Sustainable Chemistry & Engineering, 8(1), 659-668. doi:10.1021/acssuschemeng.9b06496

Russo, F., Castro-Muñoz, R., Galiano, F., & Figoli, A. (2019). Unprecedented preparation of porous Matrimid® 5218 membranes. Journal of Membrane Science, 585, 166-174. doi:10.1016/j.memsci.2019.05.036

Marino, T., Galiano, F., Simone, S., & Figoli, A. (2018). DMSO EVOL™ as novel non-toxic solvent for polyethersulfone membrane preparation. Environmental Science and Pollution Research, 26(15), 14774-14785. doi:10.1007/s11356-018-3575-9

Bui, V.-T., Dao, V.-D., & Choi, H.-S. (2016). Transferable thin films with sponge-like porous structure via improved phase separation. Polymer, 101, 184-191. doi:10.1016/j.polymer.2016.08.063

Meng, N., Priestley, R. C. E., Zhang, Y., Wang, H., & Zhang, X. (2016). The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. Journal of Membrane Science, 501, 169-178. doi:10.1016/j.memsci.2015.12.004

Xie, Q., Xu, J., Feng, L., Jiang, L., Tang, W., Luo, X., & Han, C. C. (2004). Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure. Advanced Materials, 16(4), 302-305. doi:10.1002/adma.200306281

Razmjou, A., Arifin, E., Dong, G., Mansouri, J., & Chen, V. (2012). Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. Journal of Membrane Science, 415-416, 850-863. doi:10.1016/j.memsci.2012.06.004

Teow, Y. H., Ooi, B. S., & Ahmad, A. L. (2017). Fouling behaviours of PVDF-TiO2 mixed-matrix membrane applied to humic acid treatment. Journal of Water Process Engineering, 15, 89-98. doi:10.1016/j.jwpe.2016.03.005

Wenzel, R. N. (1936). RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry, 28(8), 988-994. doi:10.1021/ie50320a024

Zhu, Z., Wang, L., Xu, Y., Li, Q., Jiang, J., & Wang, X. (2017). Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection. Journal of Colloid and Interface Science, 504, 429-439. doi:10.1016/j.jcis.2017.05.068

Liu, Y., Jin, W., Zhao, Y., Zhang, G., & Zhang, W. (2017). Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Applied Catalysis B: Environmental, 206, 642-652. doi:10.1016/j.apcatb.2017.01.075

Qin, J., Zhang, X., Yang, C., Cao, M., Ma, M., & Liu, R. (2017). ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Applied Surface Science, 392, 196-203. doi:10.1016/j.apsusc.2016.09.043

Oliveira, L. C. A., Gonçalves, M., Guerreiro, M. C., Ramalho, T. C., Fabris, J. D., Pereira, M. C., & Sapag, K. (2007). A new catalyst material based on niobia/iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms. Applied Catalysis A: General, 316(1), 117-124. doi:10.1016/j.apcata.2006.09.027

Houas, A. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31(2), 145-157. doi:10.1016/s0926-3373(00)00276-9

Kamble, S. P., Mangrulkar, P. A., Bansiwal, A. K., & Rayalu, S. S. (2008). Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves. Chemical Engineering Journal, 138(1-3), 73-83. doi:10.1016/j.cej.2007.05.030

Sirtori, C., Agüera, A., Gernjak, W., & Malato, S. (2010). Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Research, 44(9), 2735-2744. doi:10.1016/j.watres.2010.02.006

Yap, P.-S., & Lim, T.-T. (2011). Effect of aqueous matrix species on synergistic removal of bisphenol-A under solar irradiation using nitrogen-doped TiO2/AC composite. Applied Catalysis B: Environmental, 101(3-4), 709-717. doi:10.1016/j.apcatb.2010.11.013

Stuart, M. A. C., Fleer, G. J., Lyklema, J., Norde, W., & Scheutjens, J. M. H. M. (1991). Adsorption of Ions, Polyelectrolytes and Proteins. Advances in Colloid and Interface Science, 34, 477-535. doi:10.1016/0001-8686(91)80056-p

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem