- -

Spatiotemporal Precipitation Estimation from Rain Gauges and Meteorological Radar Using Geostatistics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spatiotemporal Precipitation Estimation from Rain Gauges and Meteorological Radar Using Geostatistics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cassiraga, Eduardo Fabián es_ES
dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.contributor.author Berenguer, Marc es_ES
dc.contributor.author Sempere-Torres, Daniel es_ES
dc.contributor.author Rodrigo-Ilarri, Javier es_ES
dc.date.accessioned 2021-05-25T03:33:07Z
dc.date.available 2021-05-25T03:33:07Z
dc.date.issued 2021-05 es_ES
dc.identifier.issn 1874-8961 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166756
dc.description.abstract [EN] Automatic interpolation of precipitation maps combining rain gauge and radar data has been done in the past but considering only the data collected at a given time interval. Since radar and rain gauge data are collected at short intervals, a natural extension of previous works is to account for temporal correlations and to include time into the interpolation process. In this work, rainfall is interpolated using data from the current time interval and the previous one. Interpolation is carried out using kriging with external drift, in which the radar rainfall estimate is the drift, and the mean precipitation is set to zero at the locations where the radar estimate is zero. The rainfall covariance is modeled as non-stationary in time, and the space system of reference moves with the storm. This movement serves to maximize the collocated correlation between consecutive time intervals. The proposed approach is analyzed for four episodes that took place in Catalonia (Spain). It is compared with three other approaches: (i) radar estimation, (ii) kriging with external drift using only the data from the same time interval, and (iii) kriging with external drift using data from two consecutive time intervals but not accounting for the displacement of the storm. The comparisons are performed using cross-validation. In all four episodes, the proposed approach outperforms the other three approaches. It is important to account for temporal correlation and use a Lagrangian system of coordinates that tracks the rainfall movement. es_ES
dc.description.sponsorship This work has been done in the framework of the Spanish Project FFHazF (CGL2014-60700) and the EC H2020 project ANYWHERE (DRS-1-2015-700099). Thanks are due to the Meteorological Service of Catalonia for providing the radar and rain gauges data used here. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mathematical Geosciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Rain interpolation es_ES
dc.subject Space-time modeling es_ES
dc.subject Lagrangian extrapolation es_ES
dc.subject Automatic modeling es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Spatiotemporal Precipitation Estimation from Rain Gauges and Meteorological Radar Using Geostatistics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11004-020-09882-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/700099/EU/EnhANcing emergencY management and response to extreme WeatHER and climate Events/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2014-60700-R/ES/DESARROLLO Y EVALUACION DE UN SISTEMA DE PREVISION DE LA AMENAZA DE INUNDACIONES RELAMPAGO EN ESPAÑA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Cassiraga, EF.; Gómez-Hernández, JJ.; Berenguer, M.; Sempere-Torres, D.; Rodrigo-Ilarri, J. (2021). Spatiotemporal Precipitation Estimation from Rain Gauges and Meteorological Radar Using Geostatistics. Mathematical Geosciences. 53(4):499-516. https://doi.org/10.1007/s11004-020-09882-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11004-020-09882-1 es_ES
dc.description.upvformatpinicio 499 es_ES
dc.description.upvformatpfin 516 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\430132 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aran M, Amaro J, Arús J, Bech J, Figuerola F, Gayà M, Vilaclara E (2009) Synoptic and mesoscale diagnosis of a tornado event in Castellcir, Catalonia, on 18th October 2006. Atmos Res 93:147–160 es_ES
dc.description.references Azimi-Zonooz A, Krajewski W, Bowles D, Seo D (1989) Spatial rainfall estimation by linear and non-linear co-kriging of radar-rainfall and raingage data. Stoch Hydrol Hydraul 3:51–67 es_ES
dc.description.references Bech J, Pascual R, Rigo T, Pineda N, López J, Arús J, Gayá M (2007) An observational study of the 7 September 2005 Barcelona Tornado outbreak. Nat Hazards Earth Syst Sci 7:129–139 es_ES
dc.description.references Bech J, Pineda N, Rigo T, Aran M, Amaro J, Gayà M, Arús J, Montanyà J, van der Velde O (2011) A mediterranean nocturnal heavy rainfall and tornadic event. Part I: overview, damage survey and radar analysis. Atmos Res 100:621–637 es_ES
dc.description.references Berenguer M, Sempere-Torres D, Pegram GG (2011) Sbmcast-an ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. J Hydrol 404:226–240 es_ES
dc.description.references Berenguer M, Sempere-Torres D, Hürlimann M (2015) Debris-flow forecasting at regional scale by combining susceptibility mapping and radar rainfall. Nat Hazards Earth Syst Sci 15:587–602 es_ES
dc.description.references Bochner S (1949) Fourier transforms. Princeton University Press, London, p 219 es_ES
dc.description.references Brown PE, Diggle PJ, Lord ME, Young PC (2001) Space–time calibration of radar rainfall data. J R Stat Soc Ser C 50:221–241 es_ES
dc.description.references Calheiros R, Zawadzki I (1987) Reflectivity-rain rate relationships for radar hydrology in Brazil. J Climate Appl Meteorol 26:118–132 es_ES
dc.description.references Chumchean S, Seed A, Sharma A (2006) Correcting of real-time radar rainfall bias using a Kalman filtering approach. J Hydrol 317:123–137 es_ES
dc.description.references Corral C, Velasco D, Forcadell D, Sempere-Torres D, Velasco E (2009) Advances in radar-based flood warning systems. the EHIMI system and the experience in the Besòs flash-flood pilot basin es_ES
dc.description.references Creutin J, Delrieu G, Lebel T (1988) Rain measurement by raingage-radar combination: a geostatistical approach. J Atmos Ocean Technol 5:102–115 es_ES
dc.description.references Delrieu G, Annette W, Brice B, Dominique F, Laurent B, Pierre-Emmanuel K (2014) Geostatistical radar-raingauge merging: a novel method for the quantification of rain estimation accuracy. Adv Water Resour 71:110–124 es_ES
dc.description.references Deutsch C (1991) The relationship between universal kriging, kriging with an external drift and cokriging. SCRF report 4 es_ES
dc.description.references Germann U, Turner B, Zawadzki I (2006) Predictability of precipitation from continental radar images. Part IV: limits to prediction. J Atmos Sci 63:2092–2108 es_ES
dc.description.references Goudenhoofdt E, Delobbe L (2009) Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol Earth Syst Sci 13:195–203 es_ES
dc.description.references Harrold T, Austin P (1974) The structure of precipitation systems—a review. J Rech Atmos 8:41–57 es_ES
dc.description.references Hevesi JA, Istok JD, Flint AL (1992a) Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: structural analysis. J Appl Meteorol 31:661–676 es_ES
dc.description.references Hevesi JA, Istok JD, Flint AL (1992b) Precipitation estimation in mountanious terrain using multivariate geostatistics. Part II: isohyetal maps. J Appl Meteorol 31:677–688 es_ES
dc.description.references Jewell SA, Gaussiat N (2015) An assessment of kriging-based rain-gauge-radar merging techniques. Q J R Meteorol Soc 141:2300–2313 es_ES
dc.description.references Journel AG, Rossi M (1989) When do we need a trend model in kriging? Math Geol 21:715–739 es_ES
dc.description.references Krajewski WF (1987) Cokriging radar-rainfall and rain gage data. J Geophys Res Atmos 92:9571–9580 es_ES
dc.description.references Mateo J, Ballart D, Brucet C, Aran M, Bech J (2009) A study of a heavy rainfall event and a tornado outbreak during the passage of a squall line over Catalonia. Atmos Res 93:131–146 es_ES
dc.description.references Pulkkinen S, Koistinen J, Kuitunen T, Harri AM (2016) Probabilistic radar-gauge merging by multivariate spatiotemporal techniques. J Hydrol 542:662–678 es_ES
dc.description.references Rinehart R, Garvey E (1978) Three-dimensional storm motion detection by conventional weather radar. Nature 273:287 es_ES
dc.description.references Rosenfeld D, Wolff DB, Atlas D (1993) General probability-matched relations between radar reflectivity and rain rate. J Appl Meteorol 32:50–72 es_ES
dc.description.references Rosenfeld D, Wolff DB, Amitai E (1994) The window probability matching method for rainfall measurements with radar. J Appl Meteorol 33:682–693 es_ES
dc.description.references Rosenfeld D, Amitai E, Wolff DB (1995) Improved accuracy of radar WPMM estimated rainfall upon application of objective classification criteria. J Appl Meteorol 34:212–223 es_ES
dc.description.references Sempere-Torres D, Corral C, Raso J, Malgrat P (1999) Use of weather radar for combined sewer overflows monitoring and control. J Environ Eng 125:372–380 es_ES
dc.description.references Seo DJ (1998) Real-time estimation of rainfall fields using radar rainfall and rain gage data. J Hydrol 208:37–52 es_ES
dc.description.references Seo DJ, Krajewski WF, Bowles DS (1990) Stochastic interpolation of rainfall data from rain gages and radar using cokriging: 1. Design of experiments. Water Resour Res 26:469–477 es_ES
dc.description.references Sideris I, Gabella M, Erdin R, Germann U (2014) Real-time radar-rain-gauge merging using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland. Q J R Meteorol Soc 140:1097–1111 es_ES
dc.description.references Sinclair S, Pegram G (2005) Combining radar and rain gauge rainfall estimates using conditional merging. Atmos Sci Lett 6:19–22 es_ES
dc.description.references Sun X, Mein R, Keenan T, Elliott J (2000) Flood estimation using radar and raingauge data. J Hydrol 239:4–18 es_ES
dc.description.references Todini E (2001) A bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements. Hydrol Earth Syst Sci Dis 5:187–199 es_ES
dc.description.references Velasco-Forero CA, Sempere-Torres D, Cassiraga EF, Gómez-Hernández JJ (2009) A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv Water Resour 32:986–1002 es_ES
dc.description.references Wilson JW, Brandes EA (1979) Radar measurement of rainfall—a summary. Bull Am Meteorol Soc 60:1048–1060 es_ES
dc.description.references Yao T, Journel AG (1998) Automatic modeling of (cross) covariance tables using fast fourier transform. Math Geol 30:589–615 es_ES
dc.description.references Yoon SS, Bae DH (2013) Optimal rainfall estimation by considering elevation in the Han River Basin, South Korea. J Appl Meteorol Climatol 52:802–818 es_ES
dc.description.references Zawadzki I (1973) Statistical properties of precipitation patterns. J Appl Meteorol 12:459–472 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem