- -

Community detection-based deep neural network architectures: A fully automated framework based on Likert-scale data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Community detection-based deep neural network architectures: A fully automated framework based on Likert-scale data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perez-Benito, Francisco Javier es_ES
dc.contributor.author Garcia-Gomez, Juan M. es_ES
dc.contributor.author NAVARRO PARDO, ESPERANZA es_ES
dc.contributor.author Conejero, J. Alberto es_ES
dc.date.accessioned 2021-05-28T03:32:46Z
dc.date.available 2021-05-28T03:32:46Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166901
dc.description.abstract [EN] Deep neural networks (DNNs) have emerged as a state-of-the-art tool in very different research fields due to its adaptive power to the decision space since they do not presuppose any linear relationship between data. Some of the main disadvantages of these trending models are that the choice of the network underlying architecture profoundly influences the performance of the model and that the architecture design requires prior knowledge of the field of study. The use of questionnaires is hugely extended in social/behavioral sciences. The main contribution of this work is to automate the process of a DNN architecture design by using an agglomerative hierarchical algorithm that mimics the conceptual structure of such surveys. Although the train had regression purposes, it is easily convertible to deal with classification tasks. Our proposed methodology will be tested with a database containing socio-demographic data and the responses to five psychometric Likert scales related to the prediction of happiness. These scales have been already used to design a DNN architecture based on the subdimension of the scales. We show that our new network configurations outperform the previous existing DNN architectures. es_ES
dc.description.sponsorship The authors thank the support of the project Analysis, quality, and variability of medical data funded by Universitat Politècnica de València. JMGG and JAC acknowledge the support of the H2020 project CrowdHealth (Collective Wisdom Driving Public Health Policies - 727560) funded by the European Comission. JMGG acknowledge and to the In Advance project (Patient-Centred Pathways of Early Palliative Care, Supportive Ecosystems and Appraisal Standard - 825750) funded by the European Comission, too. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Automatic architecture es_ES
dc.subject Community detection es_ES
dc.subject Community-detection deep neural network (CD-DNN) es_ES
dc.subject Deep learning es_ES
dc.subject Happiness es_ES
dc.subject Network science es_ES
dc.subject Psychometric scales es_ES
dc.subject Regression es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Community detection-based deep neural network architectures: A fully automated framework based on Likert-scale data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.6567 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/727560/EU/Collective wisdom driving public health policies/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/825750/EU/Patient-centred pathways of early palliative care, supportive ecosystems and appraisal standard/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Perez-Benito, FJ.; Garcia-Gomez, JM.; Navarro Pardo, E.; Conejero, JA. (2020). Community detection-based deep neural network architectures: A fully automated framework based on Likert-scale data. Mathematical Methods in the Applied Sciences. 43(14):8290-8301. https://doi.org/10.1002/mma.6567 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.6567 es_ES
dc.description.upvformatpinicio 8290 es_ES
dc.description.upvformatpfin 8301 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\417286 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539 es_ES
dc.description.references Antonov, V., Tarkhov, D., & Vasilyev, A. (2018). Unified approach to constructing the neural network models of real objects. Part 1. Mathematical Methods in the Applied Sciences, 41(18), 9244-9251. doi:10.1002/mma.5205 es_ES
dc.description.references Arifovic, J., & Gençay, R. (2001). Using genetic algorithms to select architecture of a feedforward artificial neural network. Physica A: Statistical Mechanics and its Applications, 289(3-4), 574-594. doi:10.1016/s0378-4371(00)00479-9 es_ES
dc.description.references IslamB‐U BaharudinZ RazaM‐Q NallagowndenP.Optimization of neural network architecture using genetic algorithm for load forecasting. In: 5th International Conference on Intelligent and Advanced Systems (ICIAS) 2014;2014:1‐6. es_ES
dc.description.references KoutníkJ SchmidhuberJ GomezF.Evolving deep unsupervised convolutional networks for vision‐based reinforcement learning. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation ACM;2014:541‐548. es_ES
dc.description.references VidnerováP NerudaR.Evolving keras architectures for sensor data analysis Federated Conference on Computer Science and Information Systems (FedCSIS) 2017IEEE;2017:109‐112. es_ES
dc.description.references Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47-97. doi:10.1103/revmodphys.74.47 es_ES
dc.description.references Newman, M., Barabási, A.-L., & Watts, D. J. (2011). The Structure and Dynamics of Networks. doi:10.1515/9781400841356 es_ES
dc.description.references Albert, R., Jeong, H., & Barabási, A.-L. (1999). Diameter of the World-Wide Web. Nature, 401(6749), 130-131. doi:10.1038/43601 es_ES
dc.description.references Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B, 4(2), 131-134. doi:10.1007/s100510050359 es_ES
dc.description.references Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences, 98(8), 4569-4574. doi:10.1073/pnas.061034498 es_ES
dc.description.references BarabásiA‐L.Network medicine ‐ from obesity to the diseasom:Mass Medical Soc;2007. es_ES
dc.description.references Jian, F., & Dandan, S. (2016). Complex Network Theory and Its Application Research on P2P Networks. Applied Mathematics and Nonlinear Sciences, 1(1), 45-52. doi:10.21042/amns.2016.1.00004 es_ES
dc.description.references FortunatoS CastellanoC.Community structure in graphs. In: Computational complexity;2012:490‐512. es_ES
dc.description.references Kernighan, B. W., & Lin, S. (1970). An Efficient Heuristic Procedure for Partitioning Graphs. Bell System Technical Journal, 49(2), 291-307. doi:10.1002/j.1538-7305.1970.tb01770.x es_ES
dc.description.references Scott, J. (2017). Social Network Analysis. doi:10.4135/9781529716597 es_ES
dc.description.references Amaral, L. A. N., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proceedings of the National Academy of Sciences, 97(21), 11149-11152. doi:10.1073/pnas.200327197 es_ES
dc.description.references Marchiori, M., & Latora, V. (2000). Harmony in the small-world. Physica A: Statistical Mechanics and its Applications, 285(3-4), 539-546. doi:10.1016/s0378-4371(00)00311-3 es_ES
dc.description.references Luo, W., Lu, N., Ni, L., Zhu, W., & Ding, W. (2020). Local community detection by the nearest nodes with greater centrality. Information Sciences, 517, 377-392. doi:10.1016/j.ins.2020.01.001 es_ES
dc.description.references YanardagP VishwanathanS‐V‐N.Deep graph kernels. In: Proceedings of the 21th acm sigkdd international conference on knowledge discovery and data mining;2015:1365‐1374. es_ES
dc.description.references LiJ ZhangH HanZ RongY ChengH HuangJ.Adversarial attack on community detection by hiding individuals. In: Proceedings of the web conference 2020;2020:917‐927. es_ES
dc.description.references Khodayar, M., & Wang, J. (2019). Spatio-Temporal Graph Deep Neural Network for Short-Term Wind Speed Forecasting. IEEE Transactions on Sustainable Energy, 10(2), 670-681. doi:10.1109/tste.2018.2844102 es_ES
dc.description.references Pérez-Benito, F. J., Villacampa-Fernández, P., Conejero, J. A., García-Gómez, J. M., & Navarro-Pardo, E. (2019). A happiness degree predictor using the conceptual data structure for deep learning architectures. Computer Methods and Programs in Biomedicine, 168, 59-68. doi:10.1016/j.cmpb.2017.11.004 es_ES
dc.description.references Spector, P. (1992). Summated Rating Scale Construction. doi:10.4135/9781412986038 es_ES
dc.description.references Cacioppo, J. T., & Berntson, G. G. (1994). Relationship between attitudes and evaluative space: A critical review, with emphasis on the separability of positive and negative substrates. Psychological Bulletin, 115(3), 401-423. doi:10.1037/0033-2909.115.3.401 es_ES
dc.description.references Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2). doi:10.1103/physreve.69.026113 es_ES
dc.description.references Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6). doi:10.1103/physreve.70.066111 es_ES
dc.description.references Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi:10.1088/1742-5468/2008/10/p10008 es_ES
dc.description.references Arenas, A., Duch, J., Fernández, A., & Gómez, S. (2007). Size reduction of complex networks preserving modularity. New Journal of Physics, 9(6), 176-176. doi:10.1088/1367-2630/9/6/176 es_ES
dc.description.references Traag, V. A. (2015). Faster unfolding of communities: Speeding up the Louvain algorithm. Physical Review E, 92(3). doi:10.1103/physreve.92.032801 es_ES
dc.description.references HagbergAric SwartPieter S ChultDaniel.Exploring network structure dynamics and function using networkx  Los Alamos National Lab.(LANL) Los Alamos NM (United States);2008. es_ES
dc.description.references AbadiM BarhamP ChenJ et al.Tensorflow: a system for large‐scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16);2016:265‐283. es_ES
dc.description.references Joseph, S., Linley, P. A., Harwood, J., Lewis, C. A., & McCollam, P. (2004). Rapid assessment of well-being: The Short Depression-Happiness Scale (SDHS). Psychology and Psychotherapy: Theory, Research and Practice, 77(4), 463-478. doi:10.1348/1476083042555406 es_ES
dc.description.references Carver, C. S. (1997). You want to measure coping but your protocol’ too long: Consider the brief cope. International Journal of Behavioral Medicine, 4(1), 92-100. doi:10.1207/s15327558ijbm0401_6 es_ES
dc.description.references Francis, L. J., Brown, L. B., & Philipchalk, R. (1992). The development of an abbreviated form of the revised Eysenck personality questionnaire (EPQR-A): Its use among students in England, Canada, the U.S.A. and Australia. Personality and Individual Differences, 13(4), 443-449. doi:10.1016/0191-8869(92)90073-x es_ES
dc.description.references Sherbourne, C. D., & Stewart, A. L. (1991). The MOS social support survey. Social Science & Medicine, 32(6), 705-714. doi:10.1016/0277-9536(91)90150-b es_ES
dc.description.references LawrenceS GilesC‐L TsoiA‐C.Lessons in neural network training: overfitting may be harder than expected. In: AAAI/IAAI;1997:540‐545. es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem